This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1tmcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| ply1tmcl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| ply1tmcl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1tmcl.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| ply1tmcl.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| ply1tmcl.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| ply1tmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1tmcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | ply1tmcl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | ply1tmcl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | ply1tmcl.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 5 | ply1tmcl.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 6 | ply1tmcl.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 7 | ply1tmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 8 | 2 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 10 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) | |
| 11 | 2 3 5 6 7 | ply1moncl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
| 13 | 2 | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| 14 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 15 | 14 1 | strfvi | ⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 16 | 7 13 4 15 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 17 | 9 10 12 16 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |