This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptnn0fz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptnn0fz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptnn0fz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptnn0fz.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) | ||
| gsummptnn0fz.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| gsummptnn0fz.u | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | ||
| Assertion | gsummptnn0fz | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptnn0fz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptnn0fz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummptnn0fz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptnn0fz.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) | |
| 5 | gsummptnn0fz.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 6 | gsummptnn0fz.u | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | |
| 7 | nfv | ⊢ Ⅎ 𝑥 ( 𝑆 < 𝑘 → 𝐶 = 0 ) | |
| 8 | nfv | ⊢ Ⅎ 𝑘 𝑆 < 𝑥 | |
| 9 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 | |
| 10 | 9 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 |
| 11 | 8 10 | nfim | ⊢ Ⅎ 𝑘 ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) |
| 12 | breq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑆 < 𝑘 ↔ 𝑆 < 𝑥 ) ) | |
| 13 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐶 = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑘 = 𝑥 → ( 𝐶 = 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 16 | 7 11 15 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 17 | 6 16 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) | |
| 19 | 4 | anim1ci | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) ) |
| 20 | rspcsbela | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 22 | 18 21 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) ) |
| 24 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) | |
| 25 | 24 | fvmpts | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) | |
| 28 | 26 27 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) |
| 29 | 28 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) ) |
| 30 | 29 | imim2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ( 𝑆 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) ) ) |
| 31 | 30 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) ) ) |
| 32 | 17 31 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) ) |
| 33 | 24 | fmpt | ⊢ ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) : ℕ0 ⟶ 𝐵 ) |
| 34 | 4 33 | sylib | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) : ℕ0 ⟶ 𝐵 ) |
| 35 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 36 | nn0ex | ⊢ ℕ0 ∈ V | |
| 37 | 35 36 | pm3.2i | ⊢ ( 𝐵 ∈ V ∧ ℕ0 ∈ V ) |
| 38 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ℕ0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∈ ( 𝐵 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) : ℕ0 ⟶ 𝐵 ) ) | |
| 39 | 37 38 | mp1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∈ ( 𝐵 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) : ℕ0 ⟶ 𝐵 ) ) |
| 40 | 34 39 | mpbird | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 41 | fz0ssnn0 | ⊢ ( 0 ... 𝑆 ) ⊆ ℕ0 | |
| 42 | resmpt | ⊢ ( ( 0 ... 𝑆 ) ⊆ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ↾ ( 0 ... 𝑆 ) ) = ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) ) | |
| 43 | 41 42 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ↾ ( 0 ... 𝑆 ) ) = ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) |
| 44 | 43 | eqcomi | ⊢ ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) = ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ↾ ( 0 ... 𝑆 ) ) |
| 45 | 1 2 3 40 5 44 | fsfnn0gsumfsffz | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) ) ) ) |
| 46 | 32 45 | mpd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ 𝐶 ) ) ) |