This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| Assertion | coe1tm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 7 | coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 9 | 2 3 4 5 6 7 8 | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 10 | eqid | ⊢ ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) | |
| 11 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) | |
| 12 | 10 8 3 11 | coe1fval2 | ⊢ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
| 13 | 9 12 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
| 14 | fconst6g | ⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) | |
| 15 | nn0ex | ⊢ ℕ0 ∈ V | |
| 16 | 1oex | ⊢ 1o ∈ V | |
| 17 | 15 16 | elmap | ⊢ ( ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) |
| 18 | 14 17 | sylibr | ⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 20 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) | |
| 21 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) | |
| 22 | 6 8 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
| 23 | 22 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) ) |
| 24 | eqid | ⊢ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) | |
| 25 | 3 8 | ply1bas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 26 | 24 25 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 27 | 26 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 28 | ssv | ⊢ ( Base ‘ 𝑃 ) ⊆ V | |
| 29 | 28 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ⊆ V ) |
| 30 | ovexd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ V ) | |
| 31 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 32 | 6 31 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑁 ) |
| 33 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 34 | 3 33 31 | ply1mulr | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 35 | 24 34 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 36 | 32 35 | eqtr3i | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 37 | 36 | a1i | ⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 38 | 37 | oveqdr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑦 ) ) |
| 39 | 7 21 23 27 29 30 38 | mulgpropd | ⊢ ( 𝑅 ∈ Ring → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 41 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 = 𝐷 ) | |
| 42 | 4 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 43 | 42 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
| 44 | 40 41 43 | oveq123d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
| 46 | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 47 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 48 | 1on | ⊢ 1o ∈ On | |
| 49 | 48 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 1o ∈ On ) |
| 50 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 51 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑅 ∈ Ring ) | |
| 52 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 53 | 52 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ∅ ∈ 1o ) |
| 54 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) | |
| 55 | 33 46 1 47 49 24 21 50 51 53 54 | mplcoe3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 56 | 55 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
| 57 | 3 33 5 | ply1vsca | ⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
| 58 | elsni | ⊢ ( 𝑏 ∈ { ∅ } → 𝑏 = ∅ ) | |
| 59 | df1o2 | ⊢ 1o = { ∅ } | |
| 60 | 58 59 | eleq2s | ⊢ ( 𝑏 ∈ 1o → 𝑏 = ∅ ) |
| 61 | 60 | iftrued | ⊢ ( 𝑏 ∈ 1o → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
| 62 | 61 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑏 ∈ 1o ) → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
| 63 | 62 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) ) |
| 64 | fconstmpt | ⊢ ( 1o × { 𝐷 } ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) | |
| 65 | 63 64 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
| 66 | fconst6g | ⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) | |
| 67 | 15 16 | elmap | ⊢ ( ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) |
| 68 | 66 67 | sylibr | ⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 69 | 68 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 70 | 65 69 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ∈ ( ℕ0 ↑m 1o ) ) |
| 71 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) | |
| 72 | 33 57 46 47 1 2 49 51 70 71 | mplmon2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 73 | 45 56 72 | 3eqtr2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 74 | eqeq1 | ⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ) ) | |
| 75 | 74 | ifbid | ⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) |
| 76 | 19 20 73 75 | fmptco | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 77 | 65 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
| 78 | 77 | eqeq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) ) |
| 79 | fveq1 | ⊢ ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ) | |
| 80 | vex | ⊢ 𝑥 ∈ V | |
| 81 | 80 | fvconst2 | ⊢ ( ∅ ∈ 1o → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
| 82 | 52 81 | mp1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
| 83 | simpl3 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) | |
| 84 | fvconst2g | ⊢ ( ( 𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) | |
| 85 | 83 52 84 | sylancl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) |
| 86 | 82 85 | eqeq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ↔ 𝑥 = 𝐷 ) ) |
| 87 | 79 86 | imbitrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → 𝑥 = 𝐷 ) ) |
| 88 | sneq | ⊢ ( 𝑥 = 𝐷 → { 𝑥 } = { 𝐷 } ) | |
| 89 | 88 | xpeq2d | ⊢ ( 𝑥 = 𝐷 → ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) |
| 90 | 87 89 | impbid1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ↔ 𝑥 = 𝐷 ) ) |
| 91 | 78 90 | bitrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ 𝑥 = 𝐷 ) ) |
| 92 | 91 | ifbid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) |
| 93 | 92 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| 94 | 13 76 93 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |