This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummonply1.p | |- P = ( Poly1 ` R ) |
|
| gsummonply1.b | |- B = ( Base ` P ) |
||
| gsummonply1.x | |- X = ( var1 ` R ) |
||
| gsummonply1.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
||
| gsummonply1.r | |- ( ph -> R e. Ring ) |
||
| gsummonply1.k | |- K = ( Base ` R ) |
||
| gsummonply1.m | |- .* = ( .s ` P ) |
||
| gsummonply1.0 | |- .0. = ( 0g ` R ) |
||
| gsummonply1.a | |- ( ph -> A. k e. NN0 A e. K ) |
||
| gsummonply1.f | |- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
||
| gsummonply1.l | |- ( ph -> L e. NN0 ) |
||
| Assertion | gsummoncoe1 | |- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummonply1.p | |- P = ( Poly1 ` R ) |
|
| 2 | gsummonply1.b | |- B = ( Base ` P ) |
|
| 3 | gsummonply1.x | |- X = ( var1 ` R ) |
|
| 4 | gsummonply1.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
|
| 5 | gsummonply1.r | |- ( ph -> R e. Ring ) |
|
| 6 | gsummonply1.k | |- K = ( Base ` R ) |
|
| 7 | gsummonply1.m | |- .* = ( .s ` P ) |
|
| 8 | gsummonply1.0 | |- .0. = ( 0g ` R ) |
|
| 9 | gsummonply1.a | |- ( ph -> A. k e. NN0 A e. K ) |
|
| 10 | gsummonply1.f | |- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
|
| 11 | gsummonply1.l | |- ( ph -> L e. NN0 ) |
|
| 12 | 9 | r19.21bi | |- ( ( ph /\ k e. NN0 ) -> A e. K ) |
| 13 | 12 | fmpttd | |- ( ph -> ( k e. NN0 |-> A ) : NN0 --> K ) |
| 14 | 6 | fvexi | |- K e. _V |
| 15 | 14 | a1i | |- ( ph -> K e. _V ) |
| 16 | nn0ex | |- NN0 e. _V |
|
| 17 | elmapg | |- ( ( K e. _V /\ NN0 e. _V ) -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
|
| 18 | 15 16 17 | sylancl | |- ( ph -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
| 19 | 13 18 | mpbird | |- ( ph -> ( k e. NN0 |-> A ) e. ( K ^m NN0 ) ) |
| 20 | 8 | fvexi | |- .0. e. _V |
| 21 | fsuppmapnn0ub | |- ( ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) /\ .0. e. _V ) -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
|
| 22 | 19 20 21 | sylancl | |- ( ph -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
| 23 | 10 22 | mpd | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) |
| 24 | simpr | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) |
|
| 25 | 9 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 A e. K ) |
| 26 | rspcsbela | |- ( ( x e. NN0 /\ A. k e. NN0 A e. K ) -> [_ x / k ]_ A e. K ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ A e. K ) |
| 28 | eqid | |- ( k e. NN0 |-> A ) = ( k e. NN0 |-> A ) |
|
| 29 | 28 | fvmpts | |- ( ( x e. NN0 /\ [_ x / k ]_ A e. K ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
| 30 | 24 27 29 | syl2anc | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
| 31 | 30 | eqeq1d | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> A ) ` x ) = .0. <-> [_ x / k ]_ A = .0. ) ) |
| 32 | 31 | imbi2d | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) <-> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 33 | 32 | biimpd | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 34 | 33 | ralimdva | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 35 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 36 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 37 | ringcmn | |- ( P e. Ring -> P e. CMnd ) |
|
| 38 | 5 36 37 | 3syl | |- ( ph -> P e. CMnd ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> P e. CMnd ) |
| 40 | 5 | 3ad2ant1 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> R e. Ring ) |
| 41 | simp3 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> A e. K ) |
|
| 42 | simp2 | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> k e. NN0 ) |
|
| 43 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 44 | 6 1 3 7 43 4 2 | ply1tmcl | |- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( A .* ( k .^ X ) ) e. B ) |
| 45 | 40 41 42 44 | syl3anc | |- ( ( ph /\ k e. NN0 /\ A e. K ) -> ( A .* ( k .^ X ) ) e. B ) |
| 46 | 45 | 3expia | |- ( ( ph /\ k e. NN0 ) -> ( A e. K -> ( A .* ( k .^ X ) ) e. B ) ) |
| 47 | 46 | ralimdva | |- ( ph -> ( A. k e. NN0 A e. K -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) ) |
| 48 | 9 47 | mpd | |- ( ph -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
| 50 | simplr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> s e. NN0 ) |
|
| 51 | nfv | |- F/ k s < x |
|
| 52 | nfcsb1v | |- F/_ k [_ x / k ]_ A |
|
| 53 | 52 | nfeq1 | |- F/ k [_ x / k ]_ A = .0. |
| 54 | 51 53 | nfim | |- F/ k ( s < x -> [_ x / k ]_ A = .0. ) |
| 55 | nfv | |- F/ x ( s < k -> [_ k / k ]_ A = .0. ) |
|
| 56 | breq2 | |- ( x = k -> ( s < x <-> s < k ) ) |
|
| 57 | csbeq1 | |- ( x = k -> [_ x / k ]_ A = [_ k / k ]_ A ) |
|
| 58 | 57 | eqeq1d | |- ( x = k -> ( [_ x / k ]_ A = .0. <-> [_ k / k ]_ A = .0. ) ) |
| 59 | 56 58 | imbi12d | |- ( x = k -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < k -> [_ k / k ]_ A = .0. ) ) ) |
| 60 | 54 55 59 | cbvralw | |- ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) <-> A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) ) |
| 61 | csbid | |- [_ k / k ]_ A = A |
|
| 62 | 61 | eqeq1i | |- ( [_ k / k ]_ A = .0. <-> A = .0. ) |
| 63 | oveq1 | |- ( A = .0. -> ( A .* ( k .^ X ) ) = ( .0. .* ( k .^ X ) ) ) |
|
| 64 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 65 | 5 64 | syl | |- ( ph -> R = ( Scalar ` P ) ) |
| 66 | 65 | fveq2d | |- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 67 | 8 66 | eqtrid | |- ( ph -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 68 | 67 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) ) |
| 70 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 71 | 5 70 | syl | |- ( ph -> P e. LMod ) |
| 72 | 71 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> P e. LMod ) |
| 73 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 74 | 43 73 | mgpbas | |- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 75 | 43 | ringmgp | |- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 76 | 5 36 75 | 3syl | |- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 77 | 76 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) |
| 78 | simpr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 79 | 3 1 73 | vr1cl | |- ( R e. Ring -> X e. ( Base ` P ) ) |
| 80 | 5 79 | syl | |- ( ph -> X e. ( Base ` P ) ) |
| 81 | 80 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> X e. ( Base ` P ) ) |
| 82 | 74 4 77 78 81 | mulgnn0cld | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` P ) ) |
| 83 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 84 | eqid | |- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
|
| 85 | 73 83 7 84 35 | lmod0vs | |- ( ( P e. LMod /\ ( k .^ X ) e. ( Base ` P ) ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 86 | 72 82 85 | syl2anc | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 87 | 69 86 | eqtrd | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 88 | 63 87 | sylan9eqr | |- ( ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) /\ A = .0. ) -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 89 | 88 | ex | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 90 | 62 89 | biimtrid | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( [_ k / k ]_ A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 91 | 90 | imim2d | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( s < k -> [_ k / k ]_ A = .0. ) -> ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 92 | 91 | ralimdva | |- ( ( ph /\ s e. NN0 ) -> ( A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 93 | 60 92 | biimtrid | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 94 | 93 | imp | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 95 | 2 35 39 49 50 94 | gsummptnn0fz | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) |
| 96 | 95 | fveq2d | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ) |
| 97 | 96 | fveq1d | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) ) |
| 98 | 5 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> R e. Ring ) |
| 99 | 11 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> L e. NN0 ) |
| 100 | elfznn0 | |- ( k e. ( 0 ... s ) -> k e. NN0 ) |
|
| 101 | simpll | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ph ) |
|
| 102 | 12 | adantlr | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> A e. K ) |
| 103 | 101 78 102 | 3jca | |- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
| 104 | 100 103 | sylan2 | |- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
| 105 | 104 45 | syl | |- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( A .* ( k .^ X ) ) e. B ) |
| 106 | 105 | ralrimiva | |- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
| 107 | 106 | adantr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
| 108 | fzfid | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( 0 ... s ) e. Fin ) |
|
| 109 | 1 2 98 99 107 108 | coe1fzgsumd | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) ) |
| 110 | nfv | |- F/ k ( ph /\ s e. NN0 ) |
|
| 111 | nfcv | |- F/_ k NN0 |
|
| 112 | 111 54 | nfralw | |- F/ k A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) |
| 113 | 110 112 | nfan | |- F/ k ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) |
| 114 | 5 | ad3antrrr | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> R e. Ring ) |
| 115 | 12 | expcom | |- ( k e. NN0 -> ( ph -> A e. K ) ) |
| 116 | 115 100 | syl11 | |- ( ph -> ( k e. ( 0 ... s ) -> A e. K ) ) |
| 117 | 116 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) -> A e. K ) ) |
| 118 | 117 | imp | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> A e. K ) |
| 119 | 100 | adantl | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> k e. NN0 ) |
| 120 | 8 6 1 3 7 43 4 | coe1tm | |- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
| 121 | 114 118 119 120 | syl3anc | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
| 122 | eqeq1 | |- ( n = L -> ( n = k <-> L = k ) ) |
|
| 123 | 122 | ifbid | |- ( n = L -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
| 124 | 123 | adantl | |- ( ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) /\ n = L ) -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
| 125 | 11 | ad3antrrr | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> L e. NN0 ) |
| 126 | 6 8 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 127 | 5 126 | syl | |- ( ph -> .0. e. K ) |
| 128 | 127 | ad3antrrr | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> .0. e. K ) |
| 129 | 118 128 | ifcld | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) e. K ) |
| 130 | 121 124 125 129 | fvmptd | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) = if ( L = k , A , .0. ) ) |
| 131 | 113 130 | mpteq2da | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) = ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) |
| 132 | 131 | oveq2d | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) ) |
| 133 | breq2 | |- ( x = L -> ( s < x <-> s < L ) ) |
|
| 134 | csbeq1 | |- ( x = L -> [_ x / k ]_ A = [_ L / k ]_ A ) |
|
| 135 | 134 | eqeq1d | |- ( x = L -> ( [_ x / k ]_ A = .0. <-> [_ L / k ]_ A = .0. ) ) |
| 136 | 133 135 | imbi12d | |- ( x = L -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < L -> [_ L / k ]_ A = .0. ) ) ) |
| 137 | 136 | rspcva | |- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> [_ L / k ]_ A = .0. ) ) |
| 138 | nfv | |- F/ k ( ph /\ ( s e. NN0 /\ s < L ) ) |
|
| 139 | nfcsb1v | |- F/_ k [_ L / k ]_ A |
|
| 140 | 139 | nfeq1 | |- F/ k [_ L / k ]_ A = .0. |
| 141 | 138 140 | nfan | |- F/ k ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) |
| 142 | elfz2nn0 | |- ( k e. ( 0 ... s ) <-> ( k e. NN0 /\ s e. NN0 /\ k <_ s ) ) |
|
| 143 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 144 | 143 | ad2antrr | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> k e. RR ) |
| 145 | nn0re | |- ( s e. NN0 -> s e. RR ) |
|
| 146 | 145 | adantl | |- ( ( k e. NN0 /\ s e. NN0 ) -> s e. RR ) |
| 147 | 146 | adantr | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> s e. RR ) |
| 148 | nn0re | |- ( L e. NN0 -> L e. RR ) |
|
| 149 | 148 | adantl | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> L e. RR ) |
| 150 | lelttr | |- ( ( k e. RR /\ s e. RR /\ L e. RR ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
|
| 151 | 144 147 149 150 | syl3anc | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
| 152 | animorr | |- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L < k \/ k < L ) ) |
|
| 153 | df-ne | |- ( L =/= k <-> -. L = k ) |
|
| 154 | 143 | adantr | |- ( ( k e. NN0 /\ s e. NN0 ) -> k e. RR ) |
| 155 | lttri2 | |- ( ( L e. RR /\ k e. RR ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
|
| 156 | 148 154 155 | syl2anr | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
| 157 | 156 | adantr | |- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
| 158 | 153 157 | bitr3id | |- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( -. L = k <-> ( L < k \/ k < L ) ) ) |
| 159 | 152 158 | mpbird | |- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> -. L = k ) |
| 160 | 159 | ex | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( k < L -> -. L = k ) ) |
| 161 | 151 160 | syld | |- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> -. L = k ) ) |
| 162 | 161 | exp4b | |- ( ( k e. NN0 /\ s e. NN0 ) -> ( L e. NN0 -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
| 163 | 162 | expimpd | |- ( k e. NN0 -> ( ( s e. NN0 /\ L e. NN0 ) -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
| 164 | 163 | com23 | |- ( k e. NN0 -> ( k <_ s -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) ) |
| 165 | 164 | imp | |- ( ( k e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 166 | 165 | 3adant2 | |- ( ( k e. NN0 /\ s e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 167 | 142 166 | sylbi | |- ( k e. ( 0 ... s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 168 | 167 | expd | |- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( L e. NN0 -> ( s < L -> -. L = k ) ) ) ) |
| 169 | 11 168 | syl7 | |- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
| 170 | 169 | com12 | |- ( s e. NN0 -> ( k e. ( 0 ... s ) -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
| 171 | 170 | com24 | |- ( s e. NN0 -> ( s < L -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) ) |
| 172 | 171 | imp | |- ( ( s e. NN0 /\ s < L ) -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) |
| 173 | 172 | impcom | |- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
| 174 | 173 | adantr | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
| 175 | 174 | imp | |- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> -. L = k ) |
| 176 | 175 | iffalsed | |- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) = .0. ) |
| 177 | 141 176 | mpteq2da | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> .0. ) ) |
| 178 | 177 | oveq2d | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) ) |
| 179 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 180 | 5 179 | syl | |- ( ph -> R e. Mnd ) |
| 181 | 180 | adantr | |- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> R e. Mnd ) |
| 182 | ovex | |- ( 0 ... s ) e. _V |
|
| 183 | 8 | gsumz | |- ( ( R e. Mnd /\ ( 0 ... s ) e. _V ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 184 | 181 182 183 | sylancl | |- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 185 | 184 | adantr | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 186 | id | |- ( [_ L / k ]_ A = .0. -> [_ L / k ]_ A = .0. ) |
|
| 187 | 186 | eqcomd | |- ( [_ L / k ]_ A = .0. -> .0. = [_ L / k ]_ A ) |
| 188 | 187 | adantl | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> .0. = [_ L / k ]_ A ) |
| 189 | 178 185 188 | 3eqtrd | |- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 190 | 189 | ex | |- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 191 | 190 | expr | |- ( ( ph /\ s e. NN0 ) -> ( s < L -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
| 192 | 191 | a2d | |- ( ( ph /\ s e. NN0 ) -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
| 193 | 192 | ex | |- ( ph -> ( s e. NN0 -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 194 | 193 | com13 | |- ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 195 | 137 194 | syl | |- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 196 | 195 | ex | |- ( L e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
| 197 | 196 | com24 | |- ( L e. NN0 -> ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
| 198 | 11 197 | mpcom | |- ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 199 | 198 | imp31 | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 200 | 199 | com12 | |- ( s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 201 | pm3.2 | |- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
|
| 202 | 201 | adantr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
| 203 | 180 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> R e. Mnd ) |
| 204 | 182 | a1i | |- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( 0 ... s ) e. _V ) |
| 205 | 11 | nn0red | |- ( ph -> L e. RR ) |
| 206 | lenlt | |- ( ( L e. RR /\ s e. RR ) -> ( L <_ s <-> -. s < L ) ) |
|
| 207 | 205 145 206 | syl2an | |- ( ( ph /\ s e. NN0 ) -> ( L <_ s <-> -. s < L ) ) |
| 208 | 11 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. NN0 ) |
| 209 | simplr | |- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> s e. NN0 ) |
|
| 210 | simpr | |- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L <_ s ) |
|
| 211 | elfz2nn0 | |- ( L e. ( 0 ... s ) <-> ( L e. NN0 /\ s e. NN0 /\ L <_ s ) ) |
|
| 212 | 208 209 210 211 | syl3anbrc | |- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. ( 0 ... s ) ) |
| 213 | 212 | ex | |- ( ( ph /\ s e. NN0 ) -> ( L <_ s -> L e. ( 0 ... s ) ) ) |
| 214 | 207 213 | sylbird | |- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> L e. ( 0 ... s ) ) ) |
| 215 | 214 | imp | |- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> L e. ( 0 ... s ) ) |
| 216 | eqcom | |- ( L = k <-> k = L ) |
|
| 217 | ifbi | |- ( ( L = k <-> k = L ) -> if ( L = k , A , .0. ) = if ( k = L , A , .0. ) ) |
|
| 218 | 216 217 | ax-mp | |- if ( L = k , A , .0. ) = if ( k = L , A , .0. ) |
| 219 | 218 | mpteq2i | |- ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> if ( k = L , A , .0. ) ) |
| 220 | 12 6 | eleqtrdi | |- ( ( ph /\ k e. NN0 ) -> A e. ( Base ` R ) ) |
| 221 | 220 | ex | |- ( ph -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
| 222 | 221 | adantr | |- ( ( ph /\ s e. NN0 ) -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
| 223 | 222 100 | impel | |- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> A e. ( Base ` R ) ) |
| 224 | 223 | ralrimiva | |- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
| 225 | 224 | adantr | |- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
| 226 | 8 203 204 215 219 225 | gsummpt1n0 | |- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 227 | 202 226 | syl6com | |- ( -. s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 228 | 200 227 | pm2.61i | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 229 | 132 228 | eqtrd | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = [_ L / k ]_ A ) |
| 230 | 97 109 229 | 3eqtrd | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |
| 231 | 230 | ex | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 232 | 34 231 | syld | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 233 | 232 | rexlimdva | |- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 234 | 23 233 | mpd | |- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |