This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . Given two well-orders <. X , R >. and <. Y , S >. of parts of A , one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2lem9.4 | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | ||
| fpwwe2lem9.6 | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | ||
| Assertion | fpwwe2lem9 | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌 ⊆ 𝑋 ∧ 𝑆 = ( 𝑅 ∩ ( 𝑋 × 𝑌 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2lem9.4 | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | |
| 5 | fpwwe2lem9.6 | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | |
| 6 | eqid | ⊢ OrdIso ( 𝑅 , 𝑋 ) = OrdIso ( 𝑅 , 𝑋 ) | |
| 7 | 6 | oicl | ⊢ Ord dom OrdIso ( 𝑅 , 𝑋 ) |
| 8 | eqid | ⊢ OrdIso ( 𝑆 , 𝑌 ) = OrdIso ( 𝑆 , 𝑌 ) | |
| 9 | 8 | oicl | ⊢ Ord dom OrdIso ( 𝑆 , 𝑌 ) |
| 10 | ordtri2or2 | ⊢ ( ( Ord dom OrdIso ( 𝑅 , 𝑋 ) ∧ Ord dom OrdIso ( 𝑆 , 𝑌 ) ) → ( dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ∨ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) ) | |
| 11 | 7 9 10 | mp2an | ⊢ ( dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ∨ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) → 𝐴 ∈ 𝑉 ) |
| 13 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 14 | 4 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) → 𝑋 𝑊 𝑅 ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) → 𝑌 𝑊 𝑆 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) → dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) | |
| 17 | 1 12 13 14 15 6 8 16 | fpwwe2lem8 | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ) → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝜑 → ( dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → 𝐴 ∈ 𝑉 ) |
| 20 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → 𝑌 𝑊 𝑆 ) |
| 22 | 4 | adantr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → 𝑋 𝑊 𝑅 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) | |
| 24 | 1 19 20 21 22 8 6 23 | fpwwe2lem8 | ⊢ ( ( 𝜑 ∧ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → ( 𝑌 ⊆ 𝑋 ∧ 𝑆 = ( 𝑅 ∩ ( 𝑋 × 𝑌 ) ) ) ) |
| 25 | 24 | ex | ⊢ ( 𝜑 → ( dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) → ( 𝑌 ⊆ 𝑋 ∧ 𝑆 = ( 𝑅 ∩ ( 𝑋 × 𝑌 ) ) ) ) ) |
| 26 | 18 25 | orim12d | ⊢ ( 𝜑 → ( ( dom OrdIso ( 𝑅 , 𝑋 ) ⊆ dom OrdIso ( 𝑆 , 𝑌 ) ∨ dom OrdIso ( 𝑆 , 𝑌 ) ⊆ dom OrdIso ( 𝑅 , 𝑋 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌 ⊆ 𝑋 ∧ 𝑆 = ( 𝑅 ∩ ( 𝑋 × 𝑌 ) ) ) ) ) ) |
| 27 | 11 26 | mpi | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌 ⊆ 𝑋 ∧ 𝑆 = ( 𝑅 ∩ ( 𝑋 × 𝑌 ) ) ) ) ) |