This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim , this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimfnfcls.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | flimfnfcls | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfnfcls.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | flimfcls | ⊢ ( 𝐽 fLim 𝑔 ) ⊆ ( 𝐽 fClus 𝑔 ) | |
| 3 | flimtop | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 4 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | 3 4 | sylib | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) | |
| 8 | simpr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐹 ⊆ 𝑔 ) | |
| 9 | flimss2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝑔 ) ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝑔 ) ) |
| 11 | simpll | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 12 | 10 11 | sseldd | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) |
| 13 | 2 12 | sselid | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 16 | sseq2 | ⊢ ( 𝑔 = 𝐹 → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑔 = 𝐹 → ( 𝐽 fClus 𝑔 ) = ( 𝐽 fClus 𝐹 ) ) | |
| 18 | 17 | eleq2d | ⊢ ( 𝑔 = 𝐹 → ( 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑔 = 𝐹 → ( ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ↔ ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 20 | 19 | rspcv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 21 | ssid | ⊢ 𝐹 ⊆ 𝐹 | |
| 22 | id | ⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) | |
| 23 | 21 22 | mpi | ⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) |
| 24 | fclstop | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) | |
| 25 | 1 | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 26 | 24 25 | jca | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) |
| 27 | 23 26 | syl | ⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) |
| 28 | 20 27 | syl6 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 29 | disjdif | ⊢ ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ | |
| 30 | simpll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 31 | simplrl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐽 ∈ Top ) | |
| 32 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑋 ∈ 𝐽 ) |
| 34 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 35 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) | |
| 36 | 33 34 35 | 3syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) |
| 37 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V ) | |
| 38 | 30 36 37 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V ) |
| 39 | ssfii | ⊢ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) |
| 41 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 42 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ 𝒫 𝑋 | |
| 43 | 42 | a1i | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ 𝒫 𝑋 ) |
| 44 | 41 43 | unssd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 46 | ssun2 | ⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) | |
| 47 | sseq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑜 ) → ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) ) ) | |
| 48 | difss | ⊢ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 | |
| 49 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) ) | |
| 50 | 33 49 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) ) |
| 51 | 48 50 | mpbiri | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ) |
| 52 | ssid | ⊢ ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) | |
| 53 | 52 | a1i | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) ) |
| 54 | 47 51 53 | elrabd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) |
| 55 | 46 54 | sselid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) |
| 56 | 55 | ne0d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ) |
| 57 | sseq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) ) | |
| 58 | 57 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ↔ ( 𝑧 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) ) |
| 59 | 58 | simprbi | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) |
| 60 | 59 | ad2antll | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) |
| 61 | sslin | ⊢ ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 63 | simprrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ 𝑜 ∈ 𝐹 ) | |
| 64 | 63 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ¬ 𝑜 ∈ 𝐹 ) |
| 65 | inssdif0 | ⊢ ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 ↔ ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ ) | |
| 66 | simplll | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 67 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) | |
| 68 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) | |
| 69 | 66 67 68 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝑦 ⊆ 𝑋 ) |
| 70 | dfss2 | ⊢ ( 𝑦 ⊆ 𝑋 ↔ ( 𝑦 ∩ 𝑋 ) = 𝑦 ) | |
| 71 | 69 70 | sylib | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ 𝑋 ) = 𝑦 ) |
| 72 | 71 | sseq1d | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 ↔ 𝑦 ⊆ 𝑜 ) ) |
| 73 | 30 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 74 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑦 ∈ 𝐹 ) | |
| 75 | elssuni | ⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) | |
| 76 | 75 1 | sseqtrrdi | ⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ 𝑋 ) |
| 77 | 76 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑜 ⊆ 𝑋 ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑜 ⊆ 𝑋 ) |
| 79 | simpr | ⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑦 ⊆ 𝑜 ) | |
| 80 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑜 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑜 ) ) → 𝑜 ∈ 𝐹 ) | |
| 81 | 73 74 78 79 80 | syl13anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑜 ∈ 𝐹 ) |
| 82 | 81 | ex | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ⊆ 𝑜 → 𝑜 ∈ 𝐹 ) ) |
| 83 | 72 82 | sylbid | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 → 𝑜 ∈ 𝐹 ) ) |
| 84 | 65 83 | biimtrrid | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ → 𝑜 ∈ 𝐹 ) ) |
| 85 | 84 | necon3bd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ¬ 𝑜 ∈ 𝐹 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 86 | 64 85 | mpd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) |
| 87 | ssn0 | ⊢ ( ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) | |
| 88 | 62 86 87 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 89 | 88 | ralrimivva | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 90 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 91 | 30 90 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 92 | 48 | a1i | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) |
| 93 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 94 | 30 93 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑋 ∈ 𝐹 ) |
| 95 | eleq1 | ⊢ ( 𝑜 = 𝑋 → ( 𝑜 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹 ) ) | |
| 96 | 94 95 | syl5ibrcom | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑜 = 𝑋 → 𝑜 ∈ 𝐹 ) ) |
| 97 | 96 | necon3bd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ¬ 𝑜 ∈ 𝐹 → 𝑜 ≠ 𝑋 ) ) |
| 98 | 63 97 | mpd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑜 ≠ 𝑋 ) |
| 99 | pssdifn0 | ⊢ ( ( 𝑜 ⊆ 𝑋 ∧ 𝑜 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) | |
| 100 | 77 98 99 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) |
| 101 | supfil | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) | |
| 102 | 33 92 100 101 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 103 | filfbas | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) | |
| 104 | 102 103 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |
| 105 | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) | |
| 106 | 91 104 105 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 107 | 89 106 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) |
| 108 | fsubbas | ⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) | |
| 109 | 94 108 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 110 | 45 56 107 109 | mpbir3and | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 111 | ssfg | ⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) | |
| 112 | 110 111 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 113 | 40 112 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 114 | 113 | unssad | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 115 | fgcl | ⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 116 | 110 115 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 117 | sseq2 | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) | |
| 118 | oveq2 | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐽 fClus 𝑔 ) = ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) | |
| 119 | 118 | eleq2d | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) |
| 120 | 117 119 | imbi12d | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ↔ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 121 | 120 | rspcv | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 122 | 116 121 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 123 | 114 122 | mpid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) |
| 124 | simpr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) | |
| 125 | simplrl | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝑜 ∈ 𝐽 ) | |
| 126 | simprrl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐴 ∈ 𝑜 ) | |
| 127 | 126 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝐴 ∈ 𝑜 ) |
| 128 | 113 55 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 129 | 128 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 130 | fclsopni | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ∧ ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) | |
| 131 | 124 125 127 129 130 | syl13anc | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) |
| 132 | 131 | ex | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 133 | 123 132 | syld | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 134 | 133 | necon2bd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |
| 135 | 29 134 | mpi | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 136 | 135 | anassrs | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 137 | 136 | expr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝐴 ∈ 𝑜 ) → ( ¬ 𝑜 ∈ 𝐹 → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |
| 138 | 137 | con4d | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝐴 ∈ 𝑜 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝑜 ∈ 𝐹 ) ) |
| 139 | 138 | ex | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑜 → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝑜 ∈ 𝐹 ) ) ) |
| 140 | 139 | com23 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) |
| 141 | 140 | ralrimdva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) |
| 142 | simprr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 143 | 141 142 | jctild | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) |
| 144 | simprl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐽 ∈ Top ) | |
| 145 | 144 4 | sylib | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 146 | simpl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 147 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) | |
| 148 | 145 146 147 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) |
| 149 | 143 148 | sylibrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 150 | 149 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) ) |
| 151 | 150 | com23 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) ) |
| 152 | 28 151 | mpdd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 153 | 15 152 | impbid2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |