This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsopni | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹 ) ) → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | fclsfil | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 3 | fclstopon | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) | |
| 4 | 2 3 | mpbird | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 5 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) | |
| 6 | 4 2 5 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 8 | eleq2 | ⊢ ( 𝑜 = 𝑈 → ( 𝐴 ∈ 𝑜 ↔ 𝐴 ∈ 𝑈 ) ) | |
| 9 | ineq1 | ⊢ ( 𝑜 = 𝑈 → ( 𝑜 ∩ 𝑠 ) = ( 𝑈 ∩ 𝑠 ) ) | |
| 10 | 9 | neeq1d | ⊢ ( 𝑜 = 𝑈 → ( ( 𝑜 ∩ 𝑠 ) ≠ ∅ ↔ ( 𝑈 ∩ 𝑠 ) ≠ ∅ ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑜 = 𝑈 → ( ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( 𝑈 ∩ 𝑠 ) ≠ ∅ ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑜 = 𝑈 → ( ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ↔ ( 𝐴 ∈ 𝑈 → ∀ 𝑠 ∈ 𝐹 ( 𝑈 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 13 | 12 | rspccv | ⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ( 𝑈 ∈ 𝐽 → ( 𝐴 ∈ 𝑈 → ∀ 𝑠 ∈ 𝐹 ( 𝑈 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 14 | 7 13 | simpl2im | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝑈 ∈ 𝐽 → ( 𝐴 ∈ 𝑈 → ∀ 𝑠 ∈ 𝐹 ( 𝑈 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 15 | ineq2 | ⊢ ( 𝑠 = 𝑆 → ( 𝑈 ∩ 𝑠 ) = ( 𝑈 ∩ 𝑆 ) ) | |
| 16 | 15 | neeq1d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑈 ∩ 𝑠 ) ≠ ∅ ↔ ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) |
| 17 | 16 | rspccv | ⊢ ( ∀ 𝑠 ∈ 𝐹 ( 𝑈 ∩ 𝑠 ) ≠ ∅ → ( 𝑆 ∈ 𝐹 → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) |
| 18 | 14 17 | syl8 | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝑈 ∈ 𝐽 → ( 𝐴 ∈ 𝑈 → ( 𝑆 ∈ 𝐹 → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 19 | 18 | 3imp2 | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹 ) ) → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) |