This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimfcls | ⊢ ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop | ⊢ ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil | ⊢ ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 4 | flimclsi | ⊢ ( 𝑥 ∈ 𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) | |
| 5 | 4 | sseld | ⊢ ( 𝑥 ∈ 𝐹 → ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → 𝑎 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 6 | 5 | com12 | ⊢ ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑥 ∈ 𝐹 → 𝑎 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 7 | 6 | ralrimiv | ⊢ ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → ∀ 𝑥 ∈ 𝐹 𝑎 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 8 | 2 | isfcls | ⊢ ( 𝑎 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐹 𝑎 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 9 | 1 3 7 8 | syl3anbrc | ⊢ ( 𝑎 ∈ ( 𝐽 fLim 𝐹 ) → 𝑎 ∈ ( 𝐽 fClus 𝐹 ) ) |
| 10 | 9 | ssriv | ⊢ ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) |