This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgcl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑧 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) ) | |
| 2 | elfvex | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 3 | fbasne0 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 4 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐹 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 𝑦 ∈ 𝐹 ) |
| 6 | fbelss | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) | |
| 7 | 6 | ex | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → 𝑦 ⊆ 𝑋 ) ) |
| 8 | 7 | ancld | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) ) |
| 9 | 8 | eximdv | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∃ 𝑦 𝑦 ∈ 𝐹 → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) ) |
| 10 | 5 9 | mpd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) |
| 11 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) |
| 13 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 14 | sseq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑋 ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
| 16 | 15 | sbcieg | ⊢ ( 𝑋 ∈ dom fBas → ( [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
| 17 | 13 16 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑋 ) ) |
| 18 | 12 17 | mpbird | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → [ 𝑋 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 19 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 20 | 0ex | ⊢ ∅ ∈ V | |
| 21 | sseq2 | ⊢ ( 𝑧 = ∅ → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ ∅ ) ) | |
| 22 | 21 | rexbidv | ⊢ ( 𝑧 = ∅ → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ ) ) |
| 23 | 20 22 | sbcie | ⊢ ( [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ ) |
| 24 | ss0 | ⊢ ( 𝑦 ⊆ ∅ → 𝑦 = ∅ ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑦 ⊆ ∅ → ( 𝑦 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
| 26 | 25 | biimpac | ⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ ∅ ) → ∅ ∈ 𝐹 ) |
| 27 | 26 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹 ) |
| 28 | 23 27 | sylbi | ⊢ ( [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 → ∅ ∈ 𝐹 ) |
| 29 | 19 28 | nsyl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ [ ∅ / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 30 | sstr | ⊢ ( ( 𝑦 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑢 ) → 𝑦 ⊆ 𝑢 ) | |
| 31 | 30 | expcom | ⊢ ( 𝑣 ⊆ 𝑢 → ( 𝑦 ⊆ 𝑣 → 𝑦 ⊆ 𝑢 ) ) |
| 32 | 31 | reximdv | ⊢ ( 𝑣 ⊆ 𝑢 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑢 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
| 34 | vex | ⊢ 𝑣 ∈ V | |
| 35 | sseq2 | ⊢ ( 𝑧 = 𝑣 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑣 ) ) | |
| 36 | 35 | rexbidv | ⊢ ( 𝑧 = 𝑣 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ) ) |
| 37 | 34 36 | sbcie | ⊢ ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ) |
| 38 | vex | ⊢ 𝑢 ∈ V | |
| 39 | sseq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑢 ) ) | |
| 40 | 39 | rexbidv | ⊢ ( 𝑧 = 𝑢 → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) ) |
| 41 | 38 40 | sbcie | ⊢ ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ) |
| 42 | 33 37 41 | 3imtr4g | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑢 ) → ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 → [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) |
| 43 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) ) | |
| 44 | 43 | 3expib | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) |
| 45 | sstr2 | ⊢ ( 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 46 | 45 | com12 | ⊢ ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 47 | 46 | reximdv | ⊢ ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 48 | ss2in | ⊢ ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑢 ∩ 𝑣 ) ) | |
| 49 | 47 48 | syl11 | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑧 ∩ 𝑤 ) → ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 50 | 44 49 | syl6 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑧 ∈ 𝐹 ∧ 𝑤 ∈ 𝐹 ) → ( ( 𝑧 ⊆ 𝑢 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 51 | 50 | exp5c | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑧 ∈ 𝐹 → ( 𝑤 ∈ 𝐹 → ( 𝑧 ⊆ 𝑢 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) ) ) |
| 52 | 51 | imp31 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑤 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑢 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 53 | 52 | impancom | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑧 ⊆ 𝑢 ) → ( 𝑤 ∈ 𝐹 → ( 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 54 | 53 | rexlimdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑧 ⊆ 𝑢 ) → ( ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 55 | 54 | rexlimdva2 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 → ( ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 56 | 55 | impd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑋 ) → ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 58 | sseq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ⊆ 𝑢 ↔ 𝑧 ⊆ 𝑢 ) ) | |
| 59 | 58 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ) |
| 60 | 41 59 | bitri | ⊢ ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ) |
| 61 | sseq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ⊆ 𝑣 ↔ 𝑤 ⊆ 𝑣 ) ) | |
| 62 | 61 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑣 ↔ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) |
| 63 | 37 62 | bitri | ⊢ ( [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) |
| 64 | 60 63 | anbi12i | ⊢ ( ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ∧ [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ↔ ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑢 ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) ) |
| 65 | 38 | inex1 | ⊢ ( 𝑢 ∩ 𝑣 ) ∈ V |
| 66 | sseq2 | ⊢ ( 𝑧 = ( 𝑢 ∩ 𝑣 ) → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 67 | 66 | rexbidv | ⊢ ( 𝑧 = ( 𝑢 ∩ 𝑣 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 68 | 65 67 | sbcie | ⊢ ( [ ( 𝑢 ∩ 𝑣 ) / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 69 | 57 64 68 | 3imtr4g | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ⊆ 𝑋 ∧ 𝑣 ⊆ 𝑋 ) → ( ( [ 𝑢 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ∧ [ 𝑣 / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) → [ ( 𝑢 ∩ 𝑣 ) / 𝑧 ] ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑧 ) ) |
| 70 | 1 2 18 29 42 69 | isfild | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |