This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclselbas.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclselbas.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | fclsfil | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 3 | fclstopon | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) | |
| 4 | 2 3 | mpbird | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) | |
| 6 | 4 2 5 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ 𝑋 ) |