This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inssdif0 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 3 | iman | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ) |
| 5 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 8 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) | |
| 9 | 6 7 8 | 3bitr4ri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ) |
| 10 | 4 9 | xchbinx | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ¬ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ) |
| 12 | df-ss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) | |
| 13 | eq0 | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ ) |