This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supfil | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ∈ ( Fil ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
| 3 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
| 5 | 2 4 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝑦 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) | |
| 8 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → 𝐵 ⊆ 𝐴 ) | |
| 9 | sseq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 10 | 9 | sbcieg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → [ 𝐴 / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
| 13 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 14 | 13 | necon3ai | ⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅ ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ¬ 𝐵 ⊆ ∅ ) |
| 16 | 0ex | ⊢ ∅ ∈ V | |
| 17 | sseq2 | ⊢ ( 𝑦 = ∅ → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅ ) ) | |
| 18 | 16 17 | sbcie | ⊢ ( [ ∅ / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ∅ ) |
| 19 | 15 18 | sylnibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ¬ [ ∅ / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
| 20 | sstr | ⊢ ( ( 𝐵 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) → 𝐵 ⊆ 𝑧 ) | |
| 21 | 20 | expcom | ⊢ ( 𝑤 ⊆ 𝑧 → ( 𝐵 ⊆ 𝑤 → 𝐵 ⊆ 𝑧 ) ) |
| 22 | vex | ⊢ 𝑤 ∈ V | |
| 23 | sseq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤 ) ) | |
| 24 | 22 23 | sbcie | ⊢ ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑤 ) |
| 25 | vex | ⊢ 𝑧 ∈ V | |
| 26 | sseq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧 ) ) | |
| 27 | 25 26 | sbcie | ⊢ ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ 𝑧 ) |
| 28 | 21 24 27 | 3imtr4g | ⊢ ( 𝑤 ⊆ 𝑧 → ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 → [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 → [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
| 30 | ssin | ⊢ ( ( 𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤 ) ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) | |
| 31 | 30 | biimpi | ⊢ ( ( 𝐵 ⊆ 𝑧 ∧ 𝐵 ⊆ 𝑤 ) → 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 32 | 27 24 31 | syl2anb | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 33 | 25 | inex1 | ⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
| 34 | sseq2 | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 35 | 33 34 | sbcie | ⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ↔ 𝐵 ⊆ ( 𝑧 ∩ 𝑤 ) ) |
| 36 | 32 35 | sylibr | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ) |
| 37 | 36 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ∧ 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) → ( ( [ 𝑧 / 𝑦 ] 𝐵 ⊆ 𝑦 ∧ [ 𝑤 / 𝑦 ] 𝐵 ⊆ 𝑦 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] 𝐵 ⊆ 𝑦 ) ) |
| 38 | 6 7 12 19 29 37 | isfild | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ 𝐵 ⊆ 𝑥 } ∈ ( Fil ‘ 𝐴 ) ) |