This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbelss | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑡 ∈ 𝐹 ) → 𝑡 ⊆ 𝑋 ) | |
| 2 | 1 | ex | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → 𝑡 ⊆ 𝑋 ) ) |
| 3 | ssid | ⊢ 𝑡 ⊆ 𝑡 | |
| 4 | sseq1 | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 ⊆ 𝑡 ↔ 𝑡 ⊆ 𝑡 ) ) | |
| 5 | 4 | rspcev | ⊢ ( ( 𝑡 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑡 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
| 6 | 3 5 | mpan2 | ⊢ ( 𝑡 ∈ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) |
| 7 | 2 6 | jca2 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
| 8 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) | |
| 9 | 7 8 | sylibrd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ 𝐹 → 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |