This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of fclscmp . Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimfnfcls.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | fclscmpi | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfnfcls.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 3 | 1 | fclsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑋 , ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) , ∅ ) ) |
| 4 | eqid | ⊢ 𝑋 = 𝑋 | |
| 5 | 4 | iftruei | ⊢ if ( 𝑋 = 𝑋 , ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) , ∅ ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) |
| 6 | 3 5 | eqtrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 7 | 2 6 | sylan | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 8 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ V | |
| 9 | 8 | dfiin3 | ⊢ ∩ 𝑥 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 10 | 7 9 | eqtrdi | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) = ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 11 | simpl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐽 ∈ Comp ) | |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐽 ∈ Comp ) |
| 13 | 12 2 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐽 ∈ Top ) |
| 14 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) | |
| 15 | 14 | adantll | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) |
| 16 | 1 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 17 | 13 15 16 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 18 | 17 | fmpttd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) : 𝐹 ⟶ ( Clsd ‘ 𝐽 ) ) |
| 19 | 18 | frnd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 20 | simpr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 22 | simpr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) | |
| 23 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ) |
| 24 | 13 15 23 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ) |
| 25 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 26 | 13 15 25 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 27 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑋 ∧ 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐹 ) | |
| 28 | 21 22 24 26 27 | syl13anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ 𝐹 ) |
| 29 | 28 | fmpttd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) : 𝐹 ⟶ 𝐹 ) |
| 30 | 29 | frnd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ 𝐹 ) |
| 31 | fiss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ 𝐹 ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( fi ‘ 𝐹 ) ) | |
| 32 | 20 30 31 | syl2anc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( fi ‘ 𝐹 ) ) |
| 33 | filfi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) | |
| 34 | 20 33 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
| 35 | 32 34 | sseqtrd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ 𝐹 ) |
| 36 | 0nelfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 37 | 20 36 | syl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
| 38 | 35 37 | ssneldd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) |
| 39 | cmpfii | ⊢ ( ( 𝐽 ∈ Comp ∧ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) → ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ≠ ∅ ) | |
| 40 | 11 19 38 39 | syl3anc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∩ ran ( 𝑥 ∈ 𝐹 ↦ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 41 | 10 40 | eqnetrd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐽 fClus 𝐹 ) ≠ ∅ ) |