This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 2 | fbasne0 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 4 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) | |
| 5 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) | |
| 6 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 7 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) ) → 𝑋 ∈ 𝐹 ) | |
| 8 | 7 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑋 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) ) |
| 10 | 6 9 | mpi | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) |
| 11 | 5 10 | mpd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) |
| 12 | 11 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹 ) ) |
| 13 | 12 | exlimdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹 ) ) |
| 14 | 4 13 | biimtrid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ → 𝑋 ∈ 𝐹 ) ) |
| 15 | 3 14 | mpd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |