This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsubbas | ⊢ ( 𝑋 ∈ 𝑉 → ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasne0 | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ 𝐴 ) ≠ ∅ ) | |
| 2 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∅ ) | |
| 3 | 2 | necon1ai | ⊢ ( ( fi ‘ 𝐴 ) ≠ ∅ → 𝐴 ∈ V ) |
| 4 | 1 3 | syl | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → 𝐴 ∈ V ) |
| 5 | ssfii | ⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 7 | fbsspw | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) | |
| 8 | 6 7 | sstrd | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → 𝐴 ⊆ 𝒫 𝑋 ) |
| 9 | fieq0 | ⊢ ( 𝐴 ∈ V → ( 𝐴 = ∅ ↔ ( fi ‘ 𝐴 ) = ∅ ) ) | |
| 10 | 9 | necon3bid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ≠ ∅ ↔ ( fi ‘ 𝐴 ) ≠ ∅ ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝐴 ∈ V ∧ ( fi ‘ 𝐴 ) ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 12 | 4 1 11 | syl2anc | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → 𝐴 ≠ ∅ ) |
| 13 | 0nelfb | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) | |
| 14 | 8 12 13 | 3jca | ⊢ ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) |
| 15 | simpr1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → 𝐴 ⊆ 𝒫 𝑋 ) | |
| 16 | fipwss | ⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 18 | pwexg | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → 𝒫 𝑋 ∈ V ) |
| 20 | 19 15 | ssexd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → 𝐴 ∈ V ) |
| 21 | simpr2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → 𝐴 ≠ ∅ ) | |
| 22 | 10 | biimpa | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → ( fi ‘ 𝐴 ) ≠ ∅ ) |
| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ( fi ‘ 𝐴 ) ≠ ∅ ) |
| 24 | simpr3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) | |
| 25 | df-nel | ⊢ ( ∅ ∉ ( fi ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ∅ ∉ ( fi ‘ 𝐴 ) ) |
| 27 | fiin | ⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) | |
| 28 | ssid | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) | |
| 29 | sseq1 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 30 | 29 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 31 | 27 28 30 | sylancl | ⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 32 | 31 | rgen2 | ⊢ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) |
| 33 | 32 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 34 | 23 26 33 | 3jca | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ( ( fi ‘ 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 35 | isfbas2 | ⊢ ( 𝑋 ∈ 𝑉 → ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ∧ ( ( fi ‘ 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ∧ ( ( fi ‘ 𝐴 ) ≠ ∅ ∧ ∅ ∉ ( fi ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ∃ 𝑧 ∈ ( fi ‘ 𝐴 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 37 | 17 34 36 | mpbir2and | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) → ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ) |
| 38 | 37 | ex | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) → ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ) ) |
| 39 | 14 38 | impbid2 | ⊢ ( 𝑋 ∈ 𝑉 → ( ( fi ‘ 𝐴 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐴 ⊆ 𝒫 𝑋 ∧ 𝐴 ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ 𝐴 ) ) ) ) |