This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ 𝐺 ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfiun | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ∅ ∈ ( fi ‘ ( 𝐹 ∪ 𝐺 ) ) ↔ ( ∅ ∈ ( fi ‘ 𝐹 ) ∨ ∅ ∈ ( fi ‘ 𝐺 ) ∨ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ 𝐺 ) ) ↔ ¬ ( ∅ ∈ ( fi ‘ 𝐹 ) ∨ ∅ ∈ ( fi ‘ 𝐺 ) ∨ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 3 | 3ioran | ⊢ ( ¬ ( ∅ ∈ ( fi ‘ 𝐹 ) ∨ ∅ ∈ ( fi ‘ 𝐺 ) ∨ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ↔ ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) | |
| 4 | df-3an | ⊢ ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ↔ ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) | |
| 5 | 3 4 | bitr2i | ⊢ ( ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ↔ ¬ ( ∅ ∈ ( fi ‘ 𝐹 ) ∨ ∅ ∈ ( fi ‘ 𝐺 ) ∨ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 | 2 5 | bitr4di | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ 𝐺 ) ) ↔ ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 7 | nesym | ⊢ ( ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑥 ∩ 𝑦 ) ) | |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ¬ ∅ = ( 𝑥 ∩ 𝑦 ) ) |
| 9 | ralnex | ⊢ ( ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ¬ ∅ = ( 𝑥 ∩ 𝑦 ) ↔ ¬ ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ¬ ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ¬ ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) |
| 12 | ralnex | ⊢ ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ¬ ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) |
| 14 | fbasfip | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ ( fi ‘ 𝐹 ) ) | |
| 15 | fbasfip | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑌 ) → ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) | |
| 16 | 14 15 | anim12i | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ) |
| 17 | 16 | biantrurd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ↔ ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 18 | 13 17 | bitr2id | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ( ( ¬ ∅ ∈ ( fi ‘ 𝐹 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝐺 ) ) ∧ ¬ ∃ 𝑥 ∈ ( fi ‘ 𝐹 ) ∃ 𝑦 ∈ ( fi ‘ 𝐺 ) ∅ = ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 19 | ssfii | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( fi ‘ 𝐹 ) ) | |
| 20 | ssralv | ⊢ ( 𝐹 ⊆ ( fi ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 22 | ssfii | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑌 ) → 𝐺 ⊆ ( fi ‘ 𝐺 ) ) | |
| 23 | ssralv | ⊢ ( 𝐺 ⊆ ( fi ‘ 𝐺 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑌 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 25 | 24 | ralimdv | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑌 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 26 | 21 25 | sylan9 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 27 | ineq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑦 ) ) | |
| 28 | 27 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝑧 ∩ 𝑦 ) ≠ ∅ ) ) |
| 29 | ineq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑤 ) ) | |
| 30 | 29 | neeq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝑧 ∩ 𝑤 ) ≠ ∅ ) ) |
| 31 | 28 30 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ) |
| 32 | fbssfi | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ ( fi ‘ 𝐹 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ) | |
| 33 | fbssfi | ⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ ( fi ‘ 𝐺 ) ) → ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 ) | |
| 34 | r19.29 | ⊢ ( ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ) → ∃ 𝑧 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑧 ⊆ 𝑥 ) ) | |
| 35 | r19.29 | ⊢ ( ( ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 ) → ∃ 𝑤 ∈ 𝐺 ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑤 ⊆ 𝑦 ) ) | |
| 36 | ss2in | ⊢ ( ( 𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦 ) → ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 37 | sseq2 | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∩ 𝑤 ) ⊆ ∅ ) ) | |
| 38 | ss0 | ⊢ ( ( 𝑧 ∩ 𝑤 ) ⊆ ∅ → ( 𝑧 ∩ 𝑤 ) = ∅ ) | |
| 39 | 37 38 | biimtrdi | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑧 ∩ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 40 | 36 39 | syl5com | ⊢ ( ( 𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 41 | 40 | necon3d | ⊢ ( ( 𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦 ) → ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 42 | 41 | ex | ⊢ ( 𝑧 ⊆ 𝑥 → ( 𝑤 ⊆ 𝑦 → ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) ) |
| 43 | 42 | com13 | ⊢ ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑤 ⊆ 𝑦 → ( 𝑧 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑤 ⊆ 𝑦 ) → ( 𝑧 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 45 | 44 | rexlimivw | ⊢ ( ∃ 𝑤 ∈ 𝐺 ( ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑤 ⊆ 𝑦 ) → ( 𝑧 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 46 | 35 45 | syl | ⊢ ( ( ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 ) → ( 𝑧 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 47 | 46 | impancom | ⊢ ( ( ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑧 ⊆ 𝑥 ) → ( ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 48 | 47 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ 𝑧 ⊆ 𝑥 ) → ( ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 49 | 34 48 | syl | ⊢ ( ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ) → ( ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 50 | 49 | expimpd | ⊢ ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ∧ ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 51 | 50 | com12 | ⊢ ( ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ∧ ∃ 𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 ) → ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 52 | 32 33 51 | syl2an | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ ( fi ‘ 𝐹 ) ) ∧ ( 𝐺 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ ( fi ‘ 𝐺 ) ) ) → ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 53 | 52 | an4s | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( fi ‘ 𝐹 ) ∧ 𝑦 ∈ ( fi ‘ 𝐺 ) ) ) → ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 54 | 53 | ralrimdvva | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ∀ 𝑧 ∈ 𝐹 ∀ 𝑤 ∈ 𝐺 ( 𝑧 ∩ 𝑤 ) ≠ ∅ → ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 55 | 31 54 | biimtrid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ → ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 56 | 26 55 | impbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ∀ 𝑥 ∈ ( fi ‘ 𝐹 ) ∀ 𝑦 ∈ ( fi ‘ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 57 | 6 18 56 | 3bitrd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ 𝐺 ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |