This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsfnflim | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 3 | fclstop | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐽 ∈ Top ) |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | neisspw | ⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 ∪ 𝐽 ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 ∪ 𝐽 ) |
| 8 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 9 | 5 | fclsfil | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 10 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) → ∪ 𝐹 = ∪ 𝐽 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 12 | 8 11 | sylan9req | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 13 | 12 | pweqd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 14 | 7 13 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 𝑋 ) |
| 15 | 2 14 | unssd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ) |
| 16 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 17 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 18 | ssn0 | ⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) | |
| 19 | 16 17 18 | sylancr | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) |
| 21 | incom | ⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) | |
| 22 | fclsneii | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) | |
| 23 | 21 22 | eqnetrrid | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 24 | 23 | 3com23 | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 26 | 25 | adantll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 27 | 26 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 28 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 30 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) | |
| 31 | 4 12 30 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 | 5 | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 33 | 32 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 34 | 33 12 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |
| 35 | 34 | snssd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → { 𝐴 } ⊆ 𝑋 ) |
| 36 | snnzg | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → { 𝐴 } ≠ ∅ ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → { 𝐴 } ≠ ∅ ) |
| 38 | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 39 | 31 35 37 38 | syl3anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 40 | filfbas | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) |
| 42 | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) | |
| 43 | 29 41 42 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 44 | 27 43 | mpbird | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 45 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 46 | fsubbas | ⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 49 | 15 20 44 48 | mpbir3and | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 50 | fgcl | ⊢ ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 52 | fvex | ⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ V | |
| 53 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ V ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V ) | |
| 54 | 52 53 | mpan2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V ) |
| 55 | ssfii | ⊢ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 58 | 57 | unssad | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 59 | ssfg | ⊢ ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) | |
| 60 | 49 59 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 61 | 58 60 | sstrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 62 | 57 | unssbd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 63 | 62 60 | sstrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 64 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) | |
| 65 | 31 51 64 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) |
| 66 | 34 63 65 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 67 | sseq2 | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | |
| 68 | oveq2 | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐽 fLim 𝑔 ) = ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) | |
| 69 | 68 | eleq2d | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) |
| 70 | 67 69 | anbi12d | ⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ↔ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∧ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) ) |
| 71 | 70 | rspcev | ⊢ ( ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∧ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) |
| 72 | 51 61 66 71 | syl12anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) |
| 73 | 72 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) |
| 74 | simprl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) | |
| 75 | simprrr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) | |
| 76 | flimtopon | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝑔 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 78 | 74 77 | mpbird | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 79 | simpl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 80 | simprrl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐹 ⊆ 𝑔 ) | |
| 81 | fclsss2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fClus 𝑔 ) ⊆ ( 𝐽 fClus 𝐹 ) ) | |
| 82 | 78 79 80 81 | syl3anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → ( 𝐽 fClus 𝑔 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| 83 | flimfcls | ⊢ ( 𝐽 fLim 𝑔 ) ⊆ ( 𝐽 fClus 𝑔 ) | |
| 84 | 83 75 | sselid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) |
| 85 | 82 84 | sseldd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) |
| 86 | 85 | rexlimdvaa | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 87 | 73 86 | impbid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) |