This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐵 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 4 | elfvdm | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ dom Fil ) | |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ 𝑋 ) | |
| 6 | elpw2g | ⊢ ( 𝑋 ∈ dom Fil → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) | |
| 7 | 6 | biimpar | ⊢ ( ( 𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ∈ 𝒫 𝑋 ) |
| 8 | 4 5 7 | syl2an | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐵 ∈ 𝒫 𝑋 ) |
| 9 | simpr1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ∈ 𝐹 ) | |
| 10 | simpr3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 11 | 9 10 | elpwd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ∈ 𝒫 𝐵 ) |
| 12 | inelcm | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵 ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) |
| 14 | pweq | ⊢ ( 𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵 ) | |
| 15 | 14 | ineq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ∩ 𝒫 𝑥 ) = ( 𝐹 ∩ 𝒫 𝐵 ) ) |
| 16 | 15 | neeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) ) |
| 17 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ↔ ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐹 ) ) ) |
| 19 | 18 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) → ( 𝐵 ∈ 𝒫 𝑋 → ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐹 ) ) ) |
| 20 | 3 8 13 19 | syl3c | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐵 ∈ 𝐹 ) |