This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimss2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐽 fLim 𝐺 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 4 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 3 6 | eleqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ 𝑋 ) |
| 8 | flimneiss | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐺 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐺 ) |
| 10 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐺 ⊆ 𝐹 ) | |
| 11 | 9 10 | sstrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 12 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 13 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) | |
| 14 | 4 12 13 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
| 15 | 7 11 14 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐽 fLim 𝐺 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |