This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009) (Proof shortened by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) | |
| 2 | dfss3 | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ) | |
| 3 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 5 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 7 | 4 6 | sylan | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 8 | eleq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐹 ↔ 𝑥 ∈ 𝐹 ) ) | |
| 9 | 8 | rspcv | ⊢ ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) |
| 10 | 7 9 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) |
| 11 | 10 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) ) |
| 12 | 11 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 13 | 12 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 14 | simpr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 15 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
| 16 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ 𝑋 ) | |
| 17 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 18 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑋 = ∪ 𝐽 ) |
| 19 | 16 18 | eleqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 20 | 19 | snssd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 21 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 22 | 21 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 23 | 4 22 | sylan | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 24 | 21 | neiint | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 25 | 15 20 23 24 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 26 | 14 25 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 27 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 29 | 26 28 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 30 | 21 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 ) |
| 31 | 15 23 30 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 ) |
| 32 | eleq2 | ⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | |
| 33 | eleq1 | ⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( 𝑥 ∈ 𝐹 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) | |
| 34 | 32 33 | imbi12d | ⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ↔ ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 35 | 34 | rspcv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 36 | 31 35 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 37 | 29 36 | mpid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) |
| 38 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 39 | 21 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) |
| 40 | 15 23 39 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) |
| 41 | 23 18 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ 𝑋 ) |
| 42 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) | |
| 43 | 42 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → ( 𝑦 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 44 | 43 | com24 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 → ( 𝑦 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 45 | 38 40 41 44 | syl3c | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
| 46 | 37 45 | syld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → 𝑦 ∈ 𝐹 ) ) |
| 47 | 46 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ) ) |
| 48 | 13 47 | impbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 49 | 2 48 | bitrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 50 | 49 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 51 | 1 50 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |