This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| dyadmbl.2 | ⊢ 𝐺 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) } | ||
| dyadmbl.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) | ||
| Assertion | dyadmbl | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | dyadmbl.2 | ⊢ 𝐺 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) } | |
| 3 | dyadmbl.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) | |
| 4 | 1 2 3 | dyadmbllem | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) = ∪ ( [,] “ 𝐺 ) ) |
| 5 | isfinite | ⊢ ( 𝐺 ∈ Fin ↔ 𝐺 ≺ ω ) | |
| 6 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 7 | ffun | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) | |
| 8 | funiunfv | ⊢ ( Fun [,] → ∪ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) = ∪ ( [,] “ 𝐺 ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ∪ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) = ∪ ( [,] “ 𝐺 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ Fin ) → 𝐺 ∈ Fin ) | |
| 11 | 2 | ssrab3 | ⊢ 𝐺 ⊆ 𝐴 |
| 12 | 11 3 | sstrid | ⊢ ( 𝜑 → 𝐺 ⊆ ran 𝐹 ) |
| 13 | 1 | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 14 | frn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 16 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 17 | 15 16 | sstri | ⊢ ran 𝐹 ⊆ ( ℝ × ℝ ) |
| 18 | 12 17 | sstrdi | ⊢ ( 𝜑 → 𝐺 ⊆ ( ℝ × ℝ ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ Fin ) → 𝐺 ⊆ ( ℝ × ℝ ) ) |
| 20 | 19 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → 𝑛 ∈ ( ℝ × ℝ ) ) |
| 21 | 1st2nd2 | ⊢ ( 𝑛 ∈ ( ℝ × ℝ ) → 𝑛 = 〈 ( 1st ‘ 𝑛 ) , ( 2nd ‘ 𝑛 ) 〉 ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → 𝑛 = 〈 ( 1st ‘ 𝑛 ) , ( 2nd ‘ 𝑛 ) 〉 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( [,] ‘ 𝑛 ) = ( [,] ‘ 〈 ( 1st ‘ 𝑛 ) , ( 2nd ‘ 𝑛 ) 〉 ) ) |
| 24 | df-ov | ⊢ ( ( 1st ‘ 𝑛 ) [,] ( 2nd ‘ 𝑛 ) ) = ( [,] ‘ 〈 ( 1st ‘ 𝑛 ) , ( 2nd ‘ 𝑛 ) 〉 ) | |
| 25 | 23 24 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( [,] ‘ 𝑛 ) = ( ( 1st ‘ 𝑛 ) [,] ( 2nd ‘ 𝑛 ) ) ) |
| 26 | xp1st | ⊢ ( 𝑛 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑛 ) ∈ ℝ ) | |
| 27 | 20 26 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( 1st ‘ 𝑛 ) ∈ ℝ ) |
| 28 | xp2nd | ⊢ ( 𝑛 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑛 ) ∈ ℝ ) | |
| 29 | 20 28 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( 2nd ‘ 𝑛 ) ∈ ℝ ) |
| 30 | iccmbl | ⊢ ( ( ( 1st ‘ 𝑛 ) ∈ ℝ ∧ ( 2nd ‘ 𝑛 ) ∈ ℝ ) → ( ( 1st ‘ 𝑛 ) [,] ( 2nd ‘ 𝑛 ) ) ∈ dom vol ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( ( 1st ‘ 𝑛 ) [,] ( 2nd ‘ 𝑛 ) ) ∈ dom vol ) |
| 32 | 25 31 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ∈ Fin ) ∧ 𝑛 ∈ 𝐺 ) → ( [,] ‘ 𝑛 ) ∈ dom vol ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ Fin ) → ∀ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) ∈ dom vol ) |
| 34 | finiunmbl | ⊢ ( ( 𝐺 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) ∈ dom vol ) → ∪ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) ∈ dom vol ) | |
| 35 | 10 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ Fin ) → ∪ 𝑛 ∈ 𝐺 ( [,] ‘ 𝑛 ) ∈ dom vol ) |
| 36 | 9 35 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ Fin ) → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) |
| 37 | 5 36 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝐺 ≺ ω ) → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) |
| 38 | rnco2 | ⊢ ran ( [,] ∘ 𝑓 ) = ( [,] “ ran 𝑓 ) | |
| 39 | f1ofo | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺 → 𝑓 : ℕ –onto→ 𝐺 ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → 𝑓 : ℕ –onto→ 𝐺 ) |
| 41 | forn | ⊢ ( 𝑓 : ℕ –onto→ 𝐺 → ran 𝑓 = 𝐺 ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ran 𝑓 = 𝐺 ) |
| 43 | 42 | imaeq2d | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ( [,] “ ran 𝑓 ) = ( [,] “ 𝐺 ) ) |
| 44 | 38 43 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ran ( [,] ∘ 𝑓 ) = ( [,] “ 𝐺 ) ) |
| 45 | 44 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ∪ ran ( [,] ∘ 𝑓 ) = ∪ ( [,] “ 𝐺 ) ) |
| 46 | f1of | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺 → 𝑓 : ℕ ⟶ 𝐺 ) | |
| 47 | 12 15 | sstrdi | ⊢ ( 𝜑 → 𝐺 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 48 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺 ∧ 𝐺 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 49 | 46 47 48 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 50 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺 ∧ 𝐺 ⊆ ran 𝐹 ) → 𝑓 : ℕ ⟶ ran 𝐹 ) | |
| 51 | 46 12 50 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → 𝑓 : ℕ ⟶ ran 𝐹 ) |
| 52 | simpl | ⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → 𝑎 ∈ ℕ ) | |
| 53 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ran 𝐹 ∧ 𝑎 ∈ ℕ ) → ( 𝑓 ‘ 𝑎 ) ∈ ran 𝐹 ) | |
| 54 | 51 52 53 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ran 𝐹 ) |
| 55 | simpr | ⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → 𝑏 ∈ ℕ ) | |
| 56 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ran 𝐹 ∧ 𝑏 ∈ ℕ ) → ( 𝑓 ‘ 𝑏 ) ∈ ran 𝐹 ) | |
| 57 | 51 55 56 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ran 𝐹 ) |
| 58 | 1 | dyaddisj | ⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ran 𝐹 ∧ ( 𝑓 ‘ 𝑏 ) ∈ ran 𝐹 ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 59 | 54 57 58 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 60 | fveq2 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑏 ) → ( [,] ‘ 𝑤 ) = ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) | |
| 61 | 60 | sseq2d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑏 ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) ) |
| 62 | eqeq2 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑏 ) → ( ( 𝑓 ‘ 𝑎 ) = 𝑤 ↔ ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) | |
| 63 | 61 62 | imbi12d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑏 ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) ) |
| 64 | 46 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → 𝑓 : ℕ ⟶ 𝐺 ) |
| 65 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺 ∧ 𝑎 ∈ ℕ ) → ( 𝑓 ‘ 𝑎 ) ∈ 𝐺 ) | |
| 66 | 64 52 65 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑎 ) ∈ 𝐺 ) |
| 67 | fveq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑎 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) | |
| 68 | 67 | sseq1d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑎 ) → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 69 | eqeq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑎 ) → ( 𝑧 = 𝑤 ↔ ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) | |
| 70 | 68 69 | imbi12d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑎 ) → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) ) |
| 71 | 70 | ralbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑎 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) ) |
| 72 | 71 2 | elrab2 | ⊢ ( ( 𝑓 ‘ 𝑎 ) ∈ 𝐺 ↔ ( ( 𝑓 ‘ 𝑎 ) ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) ) |
| 73 | 72 | simprbi | ⊢ ( ( 𝑓 ‘ 𝑎 ) ∈ 𝐺 → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) |
| 74 | 66 73 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑎 ) = 𝑤 ) ) |
| 75 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺 ∧ 𝑏 ∈ ℕ ) → ( 𝑓 ‘ 𝑏 ) ∈ 𝐺 ) | |
| 76 | 64 55 75 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑏 ) ∈ 𝐺 ) |
| 77 | 11 76 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑏 ) ∈ 𝐴 ) |
| 78 | 63 74 77 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
| 79 | f1of1 | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺 → 𝑓 : ℕ –1-1→ 𝐺 ) | |
| 80 | 79 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → 𝑓 : ℕ –1-1→ 𝐺 ) |
| 81 | f1fveq | ⊢ ( ( 𝑓 : ℕ –1-1→ 𝐺 ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) | |
| 82 | 80 81 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 83 | orc | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) | |
| 84 | 82 83 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) ) |
| 85 | 78 84 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) ) |
| 86 | fveq2 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑎 ) → ( [,] ‘ 𝑤 ) = ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) | |
| 87 | 86 | sseq2d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑎 ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) ) |
| 88 | eqeq2 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑎 ) → ( ( 𝑓 ‘ 𝑏 ) = 𝑤 ↔ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑎 ) ) ) | |
| 89 | eqcom | ⊢ ( ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑎 ) ↔ ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) | |
| 90 | 88 89 | bitrdi | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑎 ) → ( ( 𝑓 ‘ 𝑏 ) = 𝑤 ↔ ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
| 91 | 87 90 | imbi12d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑎 ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) ) |
| 92 | fveq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑏 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) | |
| 93 | 92 | sseq1d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑏 ) → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 94 | eqeq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑏 ) → ( 𝑧 = 𝑤 ↔ ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) | |
| 95 | 93 94 | imbi12d | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑏 ) → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) ) |
| 96 | 95 | ralbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑏 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) ) |
| 97 | 96 2 | elrab2 | ⊢ ( ( 𝑓 ‘ 𝑏 ) ∈ 𝐺 ↔ ( ( 𝑓 ‘ 𝑏 ) ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) ) |
| 98 | 97 | simprbi | ⊢ ( ( 𝑓 ‘ 𝑏 ) ∈ 𝐺 → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) |
| 99 | 76 98 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑓 ‘ 𝑏 ) = 𝑤 ) ) |
| 100 | 11 66 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑎 ) ∈ 𝐴 ) |
| 101 | 91 99 100 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
| 102 | 101 84 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) ) |
| 103 | olc | ⊢ ( ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) | |
| 104 | 103 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) ) |
| 105 | 85 102 104 | 3jaod | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) ) |
| 106 | 59 105 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 107 | 106 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ∀ 𝑎 ∈ ℕ ∀ 𝑏 ∈ ℕ ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 108 | 2fveq3 | ⊢ ( 𝑎 = 𝑏 → ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) = ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) | |
| 109 | 108 | disjor | ⊢ ( Disj 𝑎 ∈ ℕ ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ↔ ∀ 𝑎 ∈ ℕ ∀ 𝑏 ∈ ℕ ( 𝑎 = 𝑏 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 110 | 107 109 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → Disj 𝑎 ∈ ℕ ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ) |
| 111 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 112 | 49 110 111 | uniiccmbl | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ∪ ran ( [,] ∘ 𝑓 ) ∈ dom vol ) |
| 113 | 45 112 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –1-1-onto→ 𝐺 ) → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) |
| 114 | 113 | ex | ⊢ ( 𝜑 → ( 𝑓 : ℕ –1-1-onto→ 𝐺 → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) ) |
| 115 | 114 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺 → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) ) |
| 116 | nnenom | ⊢ ℕ ≈ ω | |
| 117 | ensym | ⊢ ( 𝐺 ≈ ω → ω ≈ 𝐺 ) | |
| 118 | entr | ⊢ ( ( ℕ ≈ ω ∧ ω ≈ 𝐺 ) → ℕ ≈ 𝐺 ) | |
| 119 | 116 117 118 | sylancr | ⊢ ( 𝐺 ≈ ω → ℕ ≈ 𝐺 ) |
| 120 | bren | ⊢ ( ℕ ≈ 𝐺 ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺 ) | |
| 121 | 119 120 | sylib | ⊢ ( 𝐺 ≈ ω → ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺 ) |
| 122 | 115 121 | impel | ⊢ ( ( 𝜑 ∧ 𝐺 ≈ ω ) → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) |
| 123 | reex | ⊢ ℝ ∈ V | |
| 124 | 123 123 | xpex | ⊢ ( ℝ × ℝ ) ∈ V |
| 125 | 124 | inex2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ∈ V |
| 126 | 125 15 | ssexi | ⊢ ran 𝐹 ∈ V |
| 127 | ssdomg | ⊢ ( ran 𝐹 ∈ V → ( 𝐺 ⊆ ran 𝐹 → 𝐺 ≼ ran 𝐹 ) ) | |
| 128 | 126 12 127 | mpsyl | ⊢ ( 𝜑 → 𝐺 ≼ ran 𝐹 ) |
| 129 | omelon | ⊢ ω ∈ On | |
| 130 | znnen | ⊢ ℤ ≈ ℕ | |
| 131 | 130 116 | entri | ⊢ ℤ ≈ ω |
| 132 | nn0ennn | ⊢ ℕ0 ≈ ℕ | |
| 133 | 132 116 | entri | ⊢ ℕ0 ≈ ω |
| 134 | xpen | ⊢ ( ( ℤ ≈ ω ∧ ℕ0 ≈ ω ) → ( ℤ × ℕ0 ) ≈ ( ω × ω ) ) | |
| 135 | 131 133 134 | mp2an | ⊢ ( ℤ × ℕ0 ) ≈ ( ω × ω ) |
| 136 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 137 | 135 136 | entri | ⊢ ( ℤ × ℕ0 ) ≈ ω |
| 138 | 137 | ensymi | ⊢ ω ≈ ( ℤ × ℕ0 ) |
| 139 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ( ℤ × ℕ0 ) ) → ( ℤ × ℕ0 ) ∈ dom card ) | |
| 140 | 129 138 139 | mp2an | ⊢ ( ℤ × ℕ0 ) ∈ dom card |
| 141 | ffn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) | |
| 142 | 13 141 | ax-mp | ⊢ 𝐹 Fn ( ℤ × ℕ0 ) |
| 143 | dffn4 | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) ↔ 𝐹 : ( ℤ × ℕ0 ) –onto→ ran 𝐹 ) | |
| 144 | 142 143 | mpbi | ⊢ 𝐹 : ( ℤ × ℕ0 ) –onto→ ran 𝐹 |
| 145 | fodomnum | ⊢ ( ( ℤ × ℕ0 ) ∈ dom card → ( 𝐹 : ( ℤ × ℕ0 ) –onto→ ran 𝐹 → ran 𝐹 ≼ ( ℤ × ℕ0 ) ) ) | |
| 146 | 140 144 145 | mp2 | ⊢ ran 𝐹 ≼ ( ℤ × ℕ0 ) |
| 147 | domentr | ⊢ ( ( ran 𝐹 ≼ ( ℤ × ℕ0 ) ∧ ( ℤ × ℕ0 ) ≈ ω ) → ran 𝐹 ≼ ω ) | |
| 148 | 146 137 147 | mp2an | ⊢ ran 𝐹 ≼ ω |
| 149 | domtr | ⊢ ( ( 𝐺 ≼ ran 𝐹 ∧ ran 𝐹 ≼ ω ) → 𝐺 ≼ ω ) | |
| 150 | 128 148 149 | sylancl | ⊢ ( 𝜑 → 𝐺 ≼ ω ) |
| 151 | brdom2 | ⊢ ( 𝐺 ≼ ω ↔ ( 𝐺 ≺ ω ∨ 𝐺 ≈ ω ) ) | |
| 152 | 150 151 | sylib | ⊢ ( 𝜑 → ( 𝐺 ≺ ω ∨ 𝐺 ≈ ω ) ) |
| 153 | 37 122 152 | mpjaodan | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐺 ) ∈ dom vol ) |
| 154 | 4 153 | eqeltrd | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) ∈ dom vol ) |