This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyaddisj | ⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | 1 | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 3 | ffn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) | |
| 4 | ovelrn | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝐴 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ) ) | |
| 5 | ovelrn | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 7 | 2 3 6 | mp2b | ⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 8 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 10 | reeanv | ⊢ ( ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℕ0 ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ↔ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 11 | nn0re | ⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → 𝑐 ∈ ℝ ) |
| 13 | nn0re | ⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) | |
| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → 𝑑 ∈ ℝ ) |
| 15 | 1 | dyaddisjlem | ⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑐 ≤ 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 16 | ancom | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ↔ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) | |
| 17 | ancom | ⊢ ( ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ↔ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) | |
| 18 | 16 17 | anbi12i | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ↔ ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) ) |
| 19 | 1 | dyaddisjlem | ⊢ ( ( ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) |
| 20 | 18 19 | sylanb | ⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) |
| 21 | orcom | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) | |
| 22 | incom | ⊢ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) | |
| 23 | 22 | eqeq1i | ⊢ ( ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) |
| 24 | 21 23 | orbi12i | ⊢ ( ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 25 | df-3or | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) | |
| 26 | df-3or | ⊢ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) | |
| 27 | 24 25 26 | 3bitr4i | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 28 | 20 27 | sylib | ⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 29 | 12 14 15 28 | lecasei | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 30 | simpl | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → 𝐴 = ( 𝑎 𝐹 𝑐 ) ) | |
| 31 | 30 | fveq2d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( [,] ‘ 𝐴 ) = ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) |
| 32 | simpr | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → 𝐵 = ( 𝑏 𝐹 𝑑 ) ) | |
| 33 | 32 | fveq2d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( [,] ‘ 𝐵 ) = ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
| 34 | 31 33 | sseq12d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 35 | 33 31 | sseq12d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ↔ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) |
| 36 | 30 | fveq2d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( (,) ‘ 𝐴 ) = ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) |
| 37 | 32 | fveq2d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( (,) ‘ 𝐵 ) = ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
| 38 | 36 37 | ineq12d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 39 | 38 | eqeq1d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
| 40 | 34 35 39 | 3orbi123d | ⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) ) |
| 41 | 29 40 | syl5ibrcom | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
| 42 | 41 | rexlimdvva | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℕ0 ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
| 43 | 10 42 | biimtrrid | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
| 44 | 43 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) |
| 45 | 9 44 | sylbi | ⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) |