This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | disjor.1 | ⊢ ( 𝑖 = 𝑗 → 𝐵 = 𝐶 ) | |
| Assertion | disjor | ⊢ ( Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjor.1 | ⊢ ( 𝑖 = 𝑗 → 𝐵 = 𝐶 ) | |
| 2 | df-disj | ⊢ ( Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 3 | ralcom4 | ⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) | |
| 4 | orcom | ⊢ ( ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( ( 𝐵 ∩ 𝐶 ) = ∅ ∨ 𝑖 = 𝑗 ) ) | |
| 5 | df-or | ⊢ ( ( ( 𝐵 ∩ 𝐶 ) = ∅ ∨ 𝑖 = 𝑗 ) ↔ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ) | |
| 6 | neq0 | ⊢ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) | |
| 7 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 9 | 6 8 | bitri | ⊢ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 10 | 9 | imbi1i | ⊢ ( ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 11 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 13 | 4 5 12 | 3bitri | ⊢ ( ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 15 | ralcom4 | ⊢ ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 18 | 1 | eleq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) |
| 19 | 18 | rmo4 | ⊢ ( ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 20 | 19 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
| 21 | 3 17 20 | 3bitr4i | ⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 22 | 2 21 | bitr4i | ⊢ ( Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |