This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dyadmbl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| dyadmbl.2 | ⊢ 𝐺 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) } | ||
| dyadmbl.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) | ||
| Assertion | dyadmbllem | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) = ∪ ( [,] “ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | dyadmbl.2 | ⊢ 𝐺 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) } | |
| 3 | dyadmbl.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) | |
| 4 | eluni2 | ⊢ ( 𝑎 ∈ ∪ ( [,] “ 𝐴 ) ↔ ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ) | |
| 5 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 6 | ffn | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) | |
| 7 | 5 6 | ax-mp | ⊢ [,] Fn ( ℝ* × ℝ* ) |
| 8 | 1 | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 9 | frn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 11 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 12 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 13 | 11 12 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 14 | 10 13 | sstri | ⊢ ran 𝐹 ⊆ ( ℝ* × ℝ* ) |
| 15 | 3 14 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ* × ℝ* ) ) |
| 16 | eleq2 | ⊢ ( 𝑖 = ( [,] ‘ 𝑡 ) → ( 𝑎 ∈ 𝑖 ↔ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) | |
| 17 | 16 | rexima | ⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝐴 ⊆ ( ℝ* × ℝ* ) ) → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ↔ ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) |
| 18 | 7 15 17 | sylancr | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ↔ ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) |
| 19 | ssrab2 | ⊢ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ 𝐴 | |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝐴 ⊆ ran 𝐹 ) |
| 21 | 19 20 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 ) |
| 22 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑡 ∈ 𝐴 ) | |
| 23 | ssid | ⊢ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) | |
| 24 | fveq2 | ⊢ ( 𝑎 = 𝑡 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑡 ) ) | |
| 25 | 24 | sseq2d | ⊢ ( 𝑎 = 𝑡 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) ) |
| 26 | 25 | rspcev | ⊢ ( ( 𝑡 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) → ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) |
| 27 | 22 23 26 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) |
| 28 | rabn0 | ⊢ ( { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ) |
| 30 | 1 | dyadmax | ⊢ ( ( { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 ∧ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ) → ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
| 31 | 21 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
| 32 | fveq2 | ⊢ ( 𝑎 = 𝑚 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑚 ) ) | |
| 33 | 32 | sseq2d | ⊢ ( 𝑎 = 𝑚 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) |
| 35 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) | |
| 36 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑡 ) ) | |
| 37 | 35 36 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑚 ) ) |
| 38 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚 ∈ 𝐴 ) | |
| 39 | fveq2 | ⊢ ( 𝑎 = 𝑤 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑤 ) ) | |
| 40 | 39 | sseq2d | ⊢ ( 𝑎 = 𝑤 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 41 | 40 | elrab | ⊢ ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 42 | 41 | imbi1i | ⊢ ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 43 | impexp | ⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) | |
| 44 | 42 43 | bitri | ⊢ ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
| 45 | impexp | ⊢ ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) ↔ ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) | |
| 46 | sstr2 | ⊢ ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) | |
| 47 | 46 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 48 | 47 | ancrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) ) ) |
| 49 | 48 | imim1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 50 | 45 49 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 51 | 50 | imim2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
| 52 | 44 51 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
| 53 | 52 | ralimdv2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 54 | 53 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
| 55 | fveq2 | ⊢ ( 𝑧 = 𝑚 → ( [,] ‘ 𝑧 ) = ( [,] ‘ 𝑚 ) ) | |
| 56 | 55 | sseq1d | ⊢ ( 𝑧 = 𝑚 → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 57 | equequ1 | ⊢ ( 𝑧 = 𝑚 → ( 𝑧 = 𝑤 ↔ 𝑚 = 𝑤 ) ) | |
| 58 | 56 57 | imbi12d | ⊢ ( 𝑧 = 𝑚 → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 59 | 58 | ralbidv | ⊢ ( 𝑧 = 𝑚 → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 60 | 59 2 | elrab2 | ⊢ ( 𝑚 ∈ 𝐺 ↔ ( 𝑚 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
| 61 | 38 54 60 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚 ∈ 𝐺 ) |
| 62 | ffun | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) | |
| 63 | 5 62 | ax-mp | ⊢ Fun [,] |
| 64 | 2 | ssrab3 | ⊢ 𝐺 ⊆ 𝐴 |
| 65 | 64 15 | sstrid | ⊢ ( 𝜑 → 𝐺 ⊆ ( ℝ* × ℝ* ) ) |
| 66 | 5 | fdmi | ⊢ dom [,] = ( ℝ* × ℝ* ) |
| 67 | 65 66 | sseqtrrdi | ⊢ ( 𝜑 → 𝐺 ⊆ dom [,] ) |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝐺 ⊆ dom [,] ) |
| 69 | funfvima2 | ⊢ ( ( Fun [,] ∧ 𝐺 ⊆ dom [,] ) → ( 𝑚 ∈ 𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) ) | |
| 70 | 63 68 69 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑚 ∈ 𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) ) |
| 71 | 61 70 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) |
| 72 | elunii | ⊢ ( ( 𝑎 ∈ ( [,] ‘ 𝑚 ) ∧ ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) | |
| 73 | 37 71 72 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) |
| 74 | 73 | exp32 | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) ) |
| 75 | 34 74 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) ) |
| 76 | 75 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
| 77 | 31 76 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) |
| 78 | 77 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
| 79 | 18 78 | sylbid | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
| 80 | 4 79 | biimtrid | ⊢ ( 𝜑 → ( 𝑎 ∈ ∪ ( [,] “ 𝐴 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
| 81 | 80 | ssrdv | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) ⊆ ∪ ( [,] “ 𝐺 ) ) |
| 82 | imass2 | ⊢ ( 𝐺 ⊆ 𝐴 → ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) ) | |
| 83 | 64 82 | ax-mp | ⊢ ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) |
| 84 | uniss | ⊢ ( ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) → ∪ ( [,] “ 𝐺 ) ⊆ ∪ ( [,] “ 𝐴 ) ) | |
| 85 | 83 84 | mp1i | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐺 ) ⊆ ∪ ( [,] “ 𝐴 ) ) |
| 86 | 81 85 | eqssd | ⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) = ∪ ( [,] “ 𝐺 ) ) |