This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for opnmbl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | opnmbllem | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( [,] ‘ 𝑧 ) = ( [,] ‘ 𝑤 ) ) | |
| 3 | 2 | sseq1d | ⊢ ( 𝑧 = 𝑤 → ( ( [,] ‘ 𝑧 ) ⊆ 𝐴 ↔ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) |
| 4 | 3 | elrab | ⊢ ( 𝑤 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ↔ ( 𝑤 ∈ ran 𝐹 ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) |
| 5 | simprr | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝑤 ∈ ran 𝐹 ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) → ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) | |
| 6 | fvex | ⊢ ( [,] ‘ 𝑤 ) ∈ V | |
| 7 | 6 | elpw | ⊢ ( ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ↔ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) |
| 8 | 5 7 | sylibr | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝑤 ∈ ran 𝐹 ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) → ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) |
| 9 | 4 8 | sylan2b | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) → ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∀ 𝑤 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) |
| 11 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 12 | ffun | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) | |
| 13 | 11 12 | ax-mp | ⊢ Fun [,] |
| 14 | ssrab2 | ⊢ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ ran 𝐹 | |
| 15 | 1 | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 16 | frn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 18 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 19 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 20 | 18 19 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 21 | 17 20 | sstri | ⊢ ran 𝐹 ⊆ ( ℝ* × ℝ* ) |
| 22 | 14 21 | sstri | ⊢ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ ( ℝ* × ℝ* ) |
| 23 | 11 | fdmi | ⊢ dom [,] = ( ℝ* × ℝ* ) |
| 24 | 22 23 | sseqtrri | ⊢ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,] |
| 25 | funimass4 | ⊢ ( ( Fun [,] ∧ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,] ) → ( ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) ) | |
| 26 | 13 24 25 | mp2an | ⊢ ( ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) |
| 27 | 10 26 | sylibr | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ) |
| 28 | sspwuni | ⊢ ( ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ↔ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝐴 ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝐴 ) |
| 30 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 31 | 30 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 32 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 33 | 30 32 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 34 | 33 | mopni2 | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 ) |
| 35 | 31 34 | mp3an1 | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 ) |
| 36 | elssuni | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ⊆ ∪ ( topGen ‘ ran (,) ) ) | |
| 37 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 38 | 36 37 | sseqtrrdi | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ⊆ ℝ ) |
| 39 | 38 | sselda | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 40 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 41 | 30 | bl2ioo | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ) |
| 42 | 39 40 41 | syl2an | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ) |
| 43 | 42 | sseq1d | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 ↔ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) |
| 44 | 2re | ⊢ 2 ∈ ℝ | |
| 45 | 1lt2 | ⊢ 1 < 2 | |
| 46 | expnlbnd | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2 ) → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) | |
| 47 | 44 45 46 | mp3an23 | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) |
| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) |
| 49 | 39 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ℝ ) |
| 50 | 2nn | ⊢ 2 ∈ ℕ | |
| 51 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 52 | 51 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑛 ∈ ℕ0 ) |
| 53 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 54 | 50 52 53 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 55 | 54 | nnred | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 56 | 49 55 | remulcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 57 | fllelt | ⊢ ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∧ ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∧ ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ) ) |
| 59 | 58 | simpld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) |
| 60 | reflcl | ⊢ ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) | |
| 61 | 56 60 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 62 | 54 | nngt0d | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 0 < ( 2 ↑ 𝑛 ) ) |
| 63 | ledivmul2 | ⊢ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ↔ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ) | |
| 64 | 61 49 55 62 63 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ↔ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ) |
| 65 | 59 64 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ) |
| 66 | peano2re | ⊢ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ ) | |
| 67 | 61 66 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ ) |
| 68 | 67 54 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 69 | 58 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ) |
| 70 | ltmuldiv | ⊢ ( ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) | |
| 71 | 49 67 55 62 70 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 72 | 69 71 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) |
| 73 | 49 68 72 | ltled | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) |
| 74 | 61 54 | nndivred | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 75 | elicc2 | ⊢ ( ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) → ( 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ∧ 𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ) | |
| 76 | 74 68 75 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ∧ 𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 77 | 49 65 73 76 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 78 | 56 | flcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ) |
| 79 | 1 | dyadval | ⊢ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) = 〈 ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) 〉 ) |
| 80 | 78 52 79 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) = 〈 ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) 〉 ) |
| 81 | 80 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) = ( [,] ‘ 〈 ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) 〉 ) ) |
| 82 | df-ov | ⊢ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) = ( [,] ‘ 〈 ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 83 | 81 82 | eqtr4di | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) = ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 84 | 77 83 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ) |
| 85 | fveq2 | ⊢ ( 𝑧 = ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ) | |
| 86 | 85 | sseq1d | ⊢ ( 𝑧 = ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) → ( ( [,] ‘ 𝑧 ) ⊆ 𝐴 ↔ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ⊆ 𝐴 ) ) |
| 87 | ffn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) | |
| 88 | 15 87 | ax-mp | ⊢ 𝐹 Fn ( ℤ × ℕ0 ) |
| 89 | fnovrn | ⊢ ( ( 𝐹 Fn ( ℤ × ℕ0 ) ∧ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ∈ ran 𝐹 ) | |
| 90 | 88 78 52 89 | mp3an2i | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ∈ ran 𝐹 ) |
| 91 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑟 ∈ ℝ+ ) | |
| 92 | 91 | rpred | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑟 ∈ ℝ ) |
| 93 | 49 92 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 − 𝑟 ) ∈ ℝ ) |
| 94 | 93 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 − 𝑟 ) ∈ ℝ* ) |
| 95 | 49 92 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + 𝑟 ) ∈ ℝ ) |
| 96 | 95 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + 𝑟 ) ∈ ℝ* ) |
| 97 | 74 92 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ∈ ℝ ) |
| 98 | 61 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 99 | 1cnd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 1 ∈ ℂ ) | |
| 100 | 55 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 101 | 54 | nnne0d | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 102 | 98 99 100 101 | divdird | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) = ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 103 | 54 | nnrecred | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 104 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) | |
| 105 | 103 92 74 104 | ltadd2dd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ) |
| 106 | 102 105 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ) |
| 107 | 49 68 97 72 106 | lttrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ) |
| 108 | 49 92 74 | ltsubaddd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤 − 𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ) ) |
| 109 | 107 108 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 − 𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 110 | 49 103 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 111 | 74 49 103 65 | leadd1dd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 112 | 102 111 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ≤ ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 113 | 103 92 49 104 | ltadd2dd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) < ( 𝑤 + 𝑟 ) ) |
| 114 | 68 110 95 112 113 | lelttrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( 𝑤 + 𝑟 ) ) |
| 115 | iccssioo | ⊢ ( ( ( ( 𝑤 − 𝑟 ) ∈ ℝ* ∧ ( 𝑤 + 𝑟 ) ∈ ℝ* ) ∧ ( ( 𝑤 − 𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∧ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( 𝑤 + 𝑟 ) ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ) | |
| 116 | 94 96 109 114 115 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ) |
| 117 | 83 116 | eqsstrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ⊆ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ) |
| 118 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) | |
| 119 | 117 118 | sstrd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ⊆ 𝐴 ) |
| 120 | 86 90 119 | elrabd | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) |
| 121 | funfvima2 | ⊢ ( ( Fun [,] ∧ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,] ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) ) | |
| 122 | 13 24 121 | mp2an | ⊢ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) |
| 123 | 120 122 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) |
| 124 | elunii | ⊢ ( ( 𝑤 ∈ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ∧ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) 𝐹 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) | |
| 125 | 84 123 124 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) |
| 126 | 48 125 | rexlimddv | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) |
| 127 | 126 | expr | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑤 − 𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) ) |
| 128 | 43 127 | sylbid | ⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) ) |
| 129 | 128 | rexlimdva | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) ) |
| 130 | 35 129 | mpd | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) |
| 131 | 29 130 | eqelssd | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) = 𝐴 ) |
| 132 | fveq2 | ⊢ ( 𝑐 = 𝑎 → ( [,] ‘ 𝑐 ) = ( [,] ‘ 𝑎 ) ) | |
| 133 | 132 | sseq1d | ⊢ ( 𝑐 = 𝑎 → ( ( [,] ‘ 𝑐 ) ⊆ ( [,] ‘ 𝑏 ) ↔ ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑏 ) ) ) |
| 134 | equequ1 | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 = 𝑏 ↔ 𝑎 = 𝑏 ) ) | |
| 135 | 133 134 | imbi12d | ⊢ ( 𝑐 = 𝑎 → ( ( ( [,] ‘ 𝑐 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑐 = 𝑏 ) ↔ ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 136 | 135 | ralbidv | ⊢ ( 𝑐 = 𝑎 → ( ∀ 𝑏 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑐 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑐 = 𝑏 ) ↔ ∀ 𝑏 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 137 | 136 | cbvrabv | ⊢ { 𝑐 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ∣ ∀ 𝑏 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑐 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑐 = 𝑏 ) } = { 𝑎 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ∣ ∀ 𝑏 ∈ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑏 ) → 𝑎 = 𝑏 ) } |
| 138 | 14 | a1i | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ ran 𝐹 ) |
| 139 | 1 137 138 | dyadmbl | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑧 ∈ ran 𝐹 ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ∈ dom vol ) |
| 140 | 131 139 | eqeltrrd | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |