This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| Assertion | uniiccmbl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | 1 | uniiccdif | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) ) |
| 5 | 4 | simpld | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
| 6 | undif | ⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ↔ ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = ∪ ran ( [,] ∘ 𝐹 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
| 8 | 1 2 3 | uniioombl | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ) |
| 9 | ovolficcss | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 11 | 10 | ssdifssd | ⊢ ( 𝜑 → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ ℝ ) |
| 12 | 4 | simprd | ⊢ ( 𝜑 → ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) |
| 13 | nulmbl | ⊢ ( ( ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑 → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) |
| 15 | unmbl | ⊢ ( ( ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ∧ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ dom vol ) | |
| 16 | 8 14 15 | syl2anc | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ dom vol ) |
| 17 | 7 16 | eqeltrrd | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ∈ dom vol ) |