This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| dyadmbl.2 | |- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
||
| dyadmbl.3 | |- ( ph -> A C_ ran F ) |
||
| Assertion | dyadmbl | |- ( ph -> U. ( [,] " A ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | dyadmbl.2 | |- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
|
| 3 | dyadmbl.3 | |- ( ph -> A C_ ran F ) |
|
| 4 | 1 2 3 | dyadmbllem | |- ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |
| 5 | isfinite | |- ( G e. Fin <-> G ~< _om ) |
|
| 6 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 7 | ffun | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
|
| 8 | funiunfv | |- ( Fun [,] -> U_ n e. G ( [,] ` n ) = U. ( [,] " G ) ) |
|
| 9 | 6 7 8 | mp2b | |- U_ n e. G ( [,] ` n ) = U. ( [,] " G ) |
| 10 | simpr | |- ( ( ph /\ G e. Fin ) -> G e. Fin ) |
|
| 11 | 2 | ssrab3 | |- G C_ A |
| 12 | 11 3 | sstrid | |- ( ph -> G C_ ran F ) |
| 13 | 1 | dyadf | |- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 14 | frn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
|
| 15 | 13 14 | ax-mp | |- ran F C_ ( <_ i^i ( RR X. RR ) ) |
| 16 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 17 | 15 16 | sstri | |- ran F C_ ( RR X. RR ) |
| 18 | 12 17 | sstrdi | |- ( ph -> G C_ ( RR X. RR ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ G e. Fin ) -> G C_ ( RR X. RR ) ) |
| 20 | 19 | sselda | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n e. ( RR X. RR ) ) |
| 21 | 1st2nd2 | |- ( n e. ( RR X. RR ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
|
| 22 | 20 21 | syl | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
| 23 | 22 | fveq2d | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) ) |
| 24 | df-ov | |- ( ( 1st ` n ) [,] ( 2nd ` n ) ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
|
| 25 | 23 24 | eqtr4di | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( ( 1st ` n ) [,] ( 2nd ` n ) ) ) |
| 26 | xp1st | |- ( n e. ( RR X. RR ) -> ( 1st ` n ) e. RR ) |
|
| 27 | 20 26 | syl | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 1st ` n ) e. RR ) |
| 28 | xp2nd | |- ( n e. ( RR X. RR ) -> ( 2nd ` n ) e. RR ) |
|
| 29 | 20 28 | syl | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 2nd ` n ) e. RR ) |
| 30 | iccmbl | |- ( ( ( 1st ` n ) e. RR /\ ( 2nd ` n ) e. RR ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) |
| 32 | 25 31 | eqeltrd | |- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) e. dom vol ) |
| 33 | 32 | ralrimiva | |- ( ( ph /\ G e. Fin ) -> A. n e. G ( [,] ` n ) e. dom vol ) |
| 34 | finiunmbl | |- ( ( G e. Fin /\ A. n e. G ( [,] ` n ) e. dom vol ) -> U_ n e. G ( [,] ` n ) e. dom vol ) |
|
| 35 | 10 33 34 | syl2anc | |- ( ( ph /\ G e. Fin ) -> U_ n e. G ( [,] ` n ) e. dom vol ) |
| 36 | 9 35 | eqeltrrid | |- ( ( ph /\ G e. Fin ) -> U. ( [,] " G ) e. dom vol ) |
| 37 | 5 36 | sylan2br | |- ( ( ph /\ G ~< _om ) -> U. ( [,] " G ) e. dom vol ) |
| 38 | rnco2 | |- ran ( [,] o. f ) = ( [,] " ran f ) |
|
| 39 | f1ofo | |- ( f : NN -1-1-onto-> G -> f : NN -onto-> G ) |
|
| 40 | 39 | adantl | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -onto-> G ) |
| 41 | forn | |- ( f : NN -onto-> G -> ran f = G ) |
|
| 42 | 40 41 | syl | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> ran f = G ) |
| 43 | 42 | imaeq2d | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> ( [,] " ran f ) = ( [,] " G ) ) |
| 44 | 38 43 | eqtrid | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> ran ( [,] o. f ) = ( [,] " G ) ) |
| 45 | 44 | unieqd | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) = U. ( [,] " G ) ) |
| 46 | f1of | |- ( f : NN -1-1-onto-> G -> f : NN --> G ) |
|
| 47 | 12 15 | sstrdi | |- ( ph -> G C_ ( <_ i^i ( RR X. RR ) ) ) |
| 48 | fss | |- ( ( f : NN --> G /\ G C_ ( <_ i^i ( RR X. RR ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 49 | 46 47 48 | syl2anr | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 50 | fss | |- ( ( f : NN --> G /\ G C_ ran F ) -> f : NN --> ran F ) |
|
| 51 | 46 12 50 | syl2anr | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ran F ) |
| 52 | simpl | |- ( ( a e. NN /\ b e. NN ) -> a e. NN ) |
|
| 53 | ffvelcdm | |- ( ( f : NN --> ran F /\ a e. NN ) -> ( f ` a ) e. ran F ) |
|
| 54 | 51 52 53 | syl2an | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. ran F ) |
| 55 | simpr | |- ( ( a e. NN /\ b e. NN ) -> b e. NN ) |
|
| 56 | ffvelcdm | |- ( ( f : NN --> ran F /\ b e. NN ) -> ( f ` b ) e. ran F ) |
|
| 57 | 51 55 56 | syl2an | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. ran F ) |
| 58 | 1 | dyaddisj | |- ( ( ( f ` a ) e. ran F /\ ( f ` b ) e. ran F ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
| 59 | 54 57 58 | syl2anc | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
| 60 | fveq2 | |- ( w = ( f ` b ) -> ( [,] ` w ) = ( [,] ` ( f ` b ) ) ) |
|
| 61 | 60 | sseq2d | |- ( w = ( f ` b ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) ) ) |
| 62 | eqeq2 | |- ( w = ( f ` b ) -> ( ( f ` a ) = w <-> ( f ` a ) = ( f ` b ) ) ) |
|
| 63 | 61 62 | imbi12d | |- ( w = ( f ` b ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) ) |
| 64 | 46 | adantl | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> G ) |
| 65 | ffvelcdm | |- ( ( f : NN --> G /\ a e. NN ) -> ( f ` a ) e. G ) |
|
| 66 | 64 52 65 | syl2an | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. G ) |
| 67 | fveq2 | |- ( z = ( f ` a ) -> ( [,] ` z ) = ( [,] ` ( f ` a ) ) ) |
|
| 68 | 67 | sseq1d | |- ( z = ( f ` a ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) ) ) |
| 69 | eqeq1 | |- ( z = ( f ` a ) -> ( z = w <-> ( f ` a ) = w ) ) |
|
| 70 | 68 69 | imbi12d | |- ( z = ( f ` a ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
| 71 | 70 | ralbidv | |- ( z = ( f ` a ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
| 72 | 71 2 | elrab2 | |- ( ( f ` a ) e. G <-> ( ( f ` a ) e. A /\ A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
| 73 | 72 | simprbi | |- ( ( f ` a ) e. G -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) |
| 74 | 66 73 | syl | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) |
| 75 | ffvelcdm | |- ( ( f : NN --> G /\ b e. NN ) -> ( f ` b ) e. G ) |
|
| 76 | 64 55 75 | syl2an | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. G ) |
| 77 | 11 76 | sselid | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. A ) |
| 78 | 63 74 77 | rspcdva | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) |
| 79 | f1of1 | |- ( f : NN -1-1-onto-> G -> f : NN -1-1-> G ) |
|
| 80 | 79 | adantl | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -1-1-> G ) |
| 81 | f1fveq | |- ( ( f : NN -1-1-> G /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) |
|
| 82 | 80 81 | sylan | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) |
| 83 | orc | |- ( a = b -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
|
| 84 | 82 83 | biimtrdi | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
| 85 | 78 84 | syld | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
| 86 | fveq2 | |- ( w = ( f ` a ) -> ( [,] ` w ) = ( [,] ` ( f ` a ) ) ) |
|
| 87 | 86 | sseq2d | |- ( w = ( f ` a ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) ) ) |
| 88 | eqeq2 | |- ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` b ) = ( f ` a ) ) ) |
|
| 89 | eqcom | |- ( ( f ` b ) = ( f ` a ) <-> ( f ` a ) = ( f ` b ) ) |
|
| 90 | 88 89 | bitrdi | |- ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` a ) = ( f ` b ) ) ) |
| 91 | 87 90 | imbi12d | |- ( w = ( f ` a ) -> ( ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) ) |
| 92 | fveq2 | |- ( z = ( f ` b ) -> ( [,] ` z ) = ( [,] ` ( f ` b ) ) ) |
|
| 93 | 92 | sseq1d | |- ( z = ( f ` b ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) ) ) |
| 94 | eqeq1 | |- ( z = ( f ` b ) -> ( z = w <-> ( f ` b ) = w ) ) |
|
| 95 | 93 94 | imbi12d | |- ( z = ( f ` b ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
| 96 | 95 | ralbidv | |- ( z = ( f ` b ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
| 97 | 96 2 | elrab2 | |- ( ( f ` b ) e. G <-> ( ( f ` b ) e. A /\ A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
| 98 | 97 | simprbi | |- ( ( f ` b ) e. G -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) |
| 99 | 76 98 | syl | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) |
| 100 | 11 66 | sselid | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. A ) |
| 101 | 91 99 100 | rspcdva | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) |
| 102 | 101 84 | syld | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
| 103 | olc | |- ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
|
| 104 | 103 | a1i | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
| 105 | 85 102 104 | 3jaod | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
| 106 | 59 105 | mpd | |- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
| 107 | 106 | ralrimivva | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
| 108 | 2fveq3 | |- ( a = b -> ( (,) ` ( f ` a ) ) = ( (,) ` ( f ` b ) ) ) |
|
| 109 | 108 | disjor | |- ( Disj_ a e. NN ( (,) ` ( f ` a ) ) <-> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
| 110 | 107 109 | sylibr | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> Disj_ a e. NN ( (,) ` ( f ` a ) ) ) |
| 111 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
|
| 112 | 49 110 111 | uniiccmbl | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) e. dom vol ) |
| 113 | 45 112 | eqeltrrd | |- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ( [,] " G ) e. dom vol ) |
| 114 | 113 | ex | |- ( ph -> ( f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) |
| 115 | 114 | exlimdv | |- ( ph -> ( E. f f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) |
| 116 | nnenom | |- NN ~~ _om |
|
| 117 | ensym | |- ( G ~~ _om -> _om ~~ G ) |
|
| 118 | entr | |- ( ( NN ~~ _om /\ _om ~~ G ) -> NN ~~ G ) |
|
| 119 | 116 117 118 | sylancr | |- ( G ~~ _om -> NN ~~ G ) |
| 120 | bren | |- ( NN ~~ G <-> E. f f : NN -1-1-onto-> G ) |
|
| 121 | 119 120 | sylib | |- ( G ~~ _om -> E. f f : NN -1-1-onto-> G ) |
| 122 | 115 121 | impel | |- ( ( ph /\ G ~~ _om ) -> U. ( [,] " G ) e. dom vol ) |
| 123 | reex | |- RR e. _V |
|
| 124 | 123 123 | xpex | |- ( RR X. RR ) e. _V |
| 125 | 124 | inex2 | |- ( <_ i^i ( RR X. RR ) ) e. _V |
| 126 | 125 15 | ssexi | |- ran F e. _V |
| 127 | ssdomg | |- ( ran F e. _V -> ( G C_ ran F -> G ~<_ ran F ) ) |
|
| 128 | 126 12 127 | mpsyl | |- ( ph -> G ~<_ ran F ) |
| 129 | omelon | |- _om e. On |
|
| 130 | znnen | |- ZZ ~~ NN |
|
| 131 | 130 116 | entri | |- ZZ ~~ _om |
| 132 | nn0ennn | |- NN0 ~~ NN |
|
| 133 | 132 116 | entri | |- NN0 ~~ _om |
| 134 | xpen | |- ( ( ZZ ~~ _om /\ NN0 ~~ _om ) -> ( ZZ X. NN0 ) ~~ ( _om X. _om ) ) |
|
| 135 | 131 133 134 | mp2an | |- ( ZZ X. NN0 ) ~~ ( _om X. _om ) |
| 136 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 137 | 135 136 | entri | |- ( ZZ X. NN0 ) ~~ _om |
| 138 | 137 | ensymi | |- _om ~~ ( ZZ X. NN0 ) |
| 139 | isnumi | |- ( ( _om e. On /\ _om ~~ ( ZZ X. NN0 ) ) -> ( ZZ X. NN0 ) e. dom card ) |
|
| 140 | 129 138 139 | mp2an | |- ( ZZ X. NN0 ) e. dom card |
| 141 | ffn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
|
| 142 | 13 141 | ax-mp | |- F Fn ( ZZ X. NN0 ) |
| 143 | dffn4 | |- ( F Fn ( ZZ X. NN0 ) <-> F : ( ZZ X. NN0 ) -onto-> ran F ) |
|
| 144 | 142 143 | mpbi | |- F : ( ZZ X. NN0 ) -onto-> ran F |
| 145 | fodomnum | |- ( ( ZZ X. NN0 ) e. dom card -> ( F : ( ZZ X. NN0 ) -onto-> ran F -> ran F ~<_ ( ZZ X. NN0 ) ) ) |
|
| 146 | 140 144 145 | mp2 | |- ran F ~<_ ( ZZ X. NN0 ) |
| 147 | domentr | |- ( ( ran F ~<_ ( ZZ X. NN0 ) /\ ( ZZ X. NN0 ) ~~ _om ) -> ran F ~<_ _om ) |
|
| 148 | 146 137 147 | mp2an | |- ran F ~<_ _om |
| 149 | domtr | |- ( ( G ~<_ ran F /\ ran F ~<_ _om ) -> G ~<_ _om ) |
|
| 150 | 128 148 149 | sylancl | |- ( ph -> G ~<_ _om ) |
| 151 | brdom2 | |- ( G ~<_ _om <-> ( G ~< _om \/ G ~~ _om ) ) |
|
| 152 | 150 151 | sylib | |- ( ph -> ( G ~< _om \/ G ~~ _om ) ) |
| 153 | 37 122 152 | mpjaodan | |- ( ph -> U. ( [,] " G ) e. dom vol ) |
| 154 | 4 153 | eqeltrd | |- ( ph -> U. ( [,] " A ) e. dom vol ) |