This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of Gleason p. 140. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnen | ⊢ ℤ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon | ⊢ ω ∈ On | |
| 2 | nnenom | ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi | ⊢ ω ≈ ℕ |
| 4 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) | |
| 5 | 1 3 4 | mp2an | ⊢ ℕ ∈ dom card |
| 6 | xpnum | ⊢ ( ( ℕ ∈ dom card ∧ ℕ ∈ dom card ) → ( ℕ × ℕ ) ∈ dom card ) | |
| 7 | 5 5 6 | mp2an | ⊢ ( ℕ × ℕ ) ∈ dom card |
| 8 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 9 | ffun | ⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → Fun − ) | |
| 10 | 8 9 | ax-mp | ⊢ Fun − |
| 11 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 12 | xpss12 | ⊢ ( ( ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ ) → ( ℕ × ℕ ) ⊆ ( ℂ × ℂ ) ) | |
| 13 | 11 11 12 | mp2an | ⊢ ( ℕ × ℕ ) ⊆ ( ℂ × ℂ ) |
| 14 | 8 | fdmi | ⊢ dom − = ( ℂ × ℂ ) |
| 15 | 13 14 | sseqtrri | ⊢ ( ℕ × ℕ ) ⊆ dom − |
| 16 | fores | ⊢ ( ( Fun − ∧ ( ℕ × ℕ ) ⊆ dom − ) → ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) | |
| 17 | 10 15 16 | mp2an | ⊢ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) |
| 18 | dfz2 | ⊢ ℤ = ( − “ ( ℕ × ℕ ) ) | |
| 19 | foeq3 | ⊢ ( ℤ = ( − “ ( ℕ × ℕ ) ) → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) |
| 21 | 17 20 | mpbir | ⊢ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ |
| 22 | fodomnum | ⊢ ( ( ℕ × ℕ ) ∈ dom card → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ → ℤ ≼ ( ℕ × ℕ ) ) ) | |
| 23 | 7 21 22 | mp2 | ⊢ ℤ ≼ ( ℕ × ℕ ) |
| 24 | xpnnen | ⊢ ( ℕ × ℕ ) ≈ ℕ | |
| 25 | domentr | ⊢ ( ( ℤ ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → ℤ ≼ ℕ ) | |
| 26 | 23 24 25 | mp2an | ⊢ ℤ ≼ ℕ |
| 27 | zex | ⊢ ℤ ∈ V | |
| 28 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 29 | ssdomg | ⊢ ( ℤ ∈ V → ( ℕ ⊆ ℤ → ℕ ≼ ℤ ) ) | |
| 30 | 27 28 29 | mp2 | ⊢ ℕ ≼ ℤ |
| 31 | sbth | ⊢ ( ( ℤ ≼ ℕ ∧ ℕ ≼ ℤ ) → ℤ ≈ ℕ ) | |
| 32 | 26 30 31 | mp2an | ⊢ ℤ ≈ ℕ |