This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 𝑥 ∈ ℝ ) |
| 4 | 3 | lep1d | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 𝑥 ≤ ( 𝑥 + 1 ) ) |
| 5 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 6 | 3 5 | syl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 7 | 2nn | ⊢ 2 ∈ ℕ | |
| 8 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 11 | 10 | nnred | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℝ ) |
| 12 | 10 | nngt0d | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 0 < ( 2 ↑ 𝑦 ) ) |
| 13 | lediv1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑦 ) ) ) → ( 𝑥 ≤ ( 𝑥 + 1 ) ↔ ( 𝑥 / ( 2 ↑ 𝑦 ) ) ≤ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ) ) | |
| 14 | 3 6 11 12 13 | syl112anc | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ≤ ( 𝑥 + 1 ) ↔ ( 𝑥 / ( 2 ↑ 𝑦 ) ) ≤ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ) ) |
| 15 | 4 14 | mpbid | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ≤ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ) |
| 16 | df-br | ⊢ ( ( 𝑥 / ( 2 ↑ 𝑦 ) ) ≤ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ↔ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ≤ ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ≤ ) |
| 18 | nndivre | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℕ ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) | |
| 19 | 2 9 18 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 20 | 2 5 | syl | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 21 | nndivre | ⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℕ ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) | |
| 22 | 20 9 21 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 23 | 19 22 | opelxpd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 24 | 17 23 | elind | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 26 | 1 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ↔ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 27 | 25 26 | mpbi | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |