This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ennn | ⊢ ℕ0 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex | ⊢ ℕ0 ∈ V | |
| 2 | nnex | ⊢ ℕ ∈ V | |
| 3 | nn0p1nn | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 1 ) ∈ ℕ ) | |
| 4 | nnm1nn0 | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 − 1 ) ∈ ℕ0 ) | |
| 5 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 6 | nn0cn | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) | |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | subadd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑥 ↔ ( 1 + 𝑥 ) = 𝑦 ) ) | |
| 9 | 7 8 | mp3an2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑥 ↔ ( 1 + 𝑥 ) = 𝑦 ) ) |
| 10 | eqcom | ⊢ ( 𝑥 = ( 𝑦 − 1 ) ↔ ( 𝑦 − 1 ) = 𝑥 ) | |
| 11 | eqcom | ⊢ ( 𝑦 = ( 1 + 𝑥 ) ↔ ( 1 + 𝑥 ) = 𝑦 ) | |
| 12 | 9 10 11 | 3bitr4g | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 1 + 𝑥 ) ) ) |
| 13 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 + 𝑥 ) = ( 𝑥 + 1 ) ) | |
| 14 | 7 13 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 1 + 𝑥 ) = ( 𝑥 + 1 ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑥 ∈ ℂ → ( 𝑦 = ( 1 + 𝑥 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 = ( 1 + 𝑥 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 17 | 12 16 | bitrd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 18 | 5 6 17 | syl2anr | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 19 | 1 2 3 4 18 | en3i | ⊢ ℕ0 ≈ ℕ |