This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| dvcnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dvcnp2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnp.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| 2 | dvcnp.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 4 | 3 | ffvelcdmda | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 5 | 2 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 6 | simpl1 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ⊆ ℂ ) | |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ∈ V ) |
| 10 | resttop | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) | |
| 11 | 5 9 10 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 12 | simpl3 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ 𝑆 ) | |
| 13 | 2 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 15 | 13 6 14 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 | toponuni | ⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 18 | 12 17 | sseqtrd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 19 | eqid | ⊢ ∪ ( 𝐾 ↾t 𝑆 ) = ∪ ( 𝐾 ↾t 𝑆 ) | |
| 20 | 19 | ntrss2 | ⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 21 | 11 18 20 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 22 | eqid | ⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) | |
| 23 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) | |
| 24 | simp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) | |
| 25 | simp2 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 26 | simp3 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) | |
| 27 | 22 2 23 24 25 26 | eldv | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 28 | 27 | simprbda | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 29 | 21 28 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ 𝐴 ) |
| 30 | 3 29 | ffvelcdmd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 32 | 4 31 | subcld | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 33 | ssidd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ℂ ⊆ ℂ ) | |
| 34 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) | |
| 35 | 13 13 34 | mp2an | ⊢ ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
| 36 | 35 | toponrestid | ⊢ ( 𝐾 ×t 𝐾 ) = ( ( 𝐾 ×t 𝐾 ) ↾t ( ℂ × ℂ ) ) |
| 37 | 12 6 | sstrd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ℂ ) |
| 38 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) | |
| 39 | 22 2 38 24 25 26 | eldv | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 40 | 39 | simprbda | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 41 | 21 40 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ 𝐴 ) |
| 42 | 3 37 41 | dvlem | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 43 | 37 | ssdifssd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 44 | 43 | sselda | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ℂ ) |
| 45 | 37 41 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ℂ ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
| 47 | 44 46 | subcld | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
| 48 | 27 | simplbda | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 49 | limcresi | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) | |
| 50 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 51 | resmpt | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) ) | |
| 52 | 50 51 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) |
| 53 | 52 | oveq1i | ⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
| 54 | 49 53 | sseqtri | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
| 55 | 45 | subidd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 56 | ssid | ⊢ ℂ ⊆ ℂ | |
| 57 | cncfmptid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 58 | 37 56 57 | sylancl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 59 | cncfmptc | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 60 | 45 37 33 59 | syl3anc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 61 | 58 60 | subcncf | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 62 | oveq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) | |
| 63 | 61 41 62 | cnmptlimc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 64 | 55 63 | eqeltrrd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 65 | 54 64 | sselid | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 66 | 2 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 67 | 24 25 26 | dvcl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 68 | 0cn | ⊢ 0 ∈ ℂ | |
| 69 | opelxpi | ⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) | |
| 70 | 67 68 69 | sylancl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) |
| 71 | 35 | toponunii | ⊢ ( ℂ × ℂ ) = ∪ ( 𝐾 ×t 𝐾 ) |
| 72 | 71 | cncnpi | ⊢ ( ( ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
| 73 | 66 70 72 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
| 74 | 42 47 33 33 2 36 48 65 73 | limccnp2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 75 | df-mpt | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } | |
| 76 | 75 | oveq1i | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) = ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) |
| 77 | 74 76 | eleqtrdi | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) ∈ ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) ) |
| 78 | 0cnd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ℂ ) | |
| 79 | ovmpot | ⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) = ( 𝑦 · 0 ) ) | |
| 80 | 67 78 79 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) = ( 𝑦 · 0 ) ) |
| 81 | 3 37 29 | dvlem | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 82 | 37 29 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ℂ ) |
| 83 | 82 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
| 84 | 44 83 | subcld | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
| 85 | ovmpot | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ∧ ( 𝑧 − 𝐵 ) ∈ ℂ ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) | |
| 86 | 81 84 85 | syl2anc | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) |
| 87 | 86 | eqeq2d | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ↔ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) |
| 88 | 87 | pm5.32da | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) ) |
| 89 | 88 | opabbidv | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) } ) |
| 90 | df-mpt | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) } | |
| 91 | 89 90 | eqtr4di | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) |
| 92 | 91 | oveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 93 | 77 80 92 | 3eltr3d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 94 | 67 | mul01d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) = 0 ) |
| 95 | 3 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 96 | simpr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) | |
| 97 | 50 96 | sselid | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ 𝐴 ) |
| 98 | 95 97 | ffvelcdmd | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 99 | 30 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 100 | 98 99 | subcld | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 101 | eldifsni | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) | |
| 102 | 101 | adantl | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ≠ 𝐵 ) |
| 103 | 44 83 102 | subne0d | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ≠ 0 ) |
| 104 | 100 84 103 | divcan1d | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 105 | 104 | mpteq2dva | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 106 | 105 | oveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 107 | 93 94 106 | 3eltr3d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 108 | 32 | fmpttd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) : 𝐴 ⟶ ℂ ) |
| 109 | 108 | limcdif | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |
| 110 | resmpt | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 111 | 50 110 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 112 | 111 | oveq1i | ⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) |
| 113 | 109 112 | eqtrdi | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 114 | 107 113 | eleqtrrd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 115 | cncfmptc | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 116 | 30 37 33 115 | syl3anc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 117 | eqidd | ⊢ ( 𝑧 = 𝐵 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 118 | 116 29 117 | cnmptlimc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) limℂ 𝐵 ) ) |
| 119 | 2 | addcn | ⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 120 | opelxpi | ⊢ ( ( 0 ∈ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) | |
| 121 | 68 30 120 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) |
| 122 | 71 | cncnpi | ⊢ ( ( + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
| 123 | 119 121 122 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
| 124 | 32 31 33 33 2 36 114 118 123 | limccnp2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 125 | 30 | addlidd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 126 | 4 31 | npcand | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 127 | 126 | mpteq2dva | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 128 | 3 | feqmptd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 | 127 128 | eqtr4d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = 𝐹 ) |
| 130 | 129 | oveq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| 131 | 124 125 130 | 3eltr3d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 132 | 2 1 | cnplimc | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 133 | 37 29 132 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 134 | 3 131 133 | mpbir2and | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| 135 | 134 | ex | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 136 | 135 | exlimdv | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 137 | eldmg | ⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ) | |
| 138 | 137 | ibi | ⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 139 | 136 138 | impel | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |