This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnp.j | |- J = ( K |`t A ) |
|
| dvcnp.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | dvcnp2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F e. ( ( J CnP K ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnp.j | |- J = ( K |`t A ) |
|
| 2 | dvcnp.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | simpl2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F : A --> CC ) |
|
| 4 | 3 | ffvelcdmda | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` z ) e. CC ) |
| 5 | 2 | cnfldtop | |- K e. Top |
| 6 | simpl1 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S C_ CC ) |
|
| 7 | cnex | |- CC e. _V |
|
| 8 | ssexg | |- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S e. _V ) |
| 10 | resttop | |- ( ( K e. Top /\ S e. _V ) -> ( K |`t S ) e. Top ) |
|
| 11 | 5 9 10 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. Top ) |
| 12 | simpl3 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ S ) |
|
| 13 | 2 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 14 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 15 | 13 6 14 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 16 | toponuni | |- ( ( K |`t S ) e. ( TopOn ` S ) -> S = U. ( K |`t S ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> S = U. ( K |`t S ) ) |
| 18 | 12 17 | sseqtrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ U. ( K |`t S ) ) |
| 19 | eqid | |- U. ( K |`t S ) = U. ( K |`t S ) |
|
| 20 | 19 | ntrss2 | |- ( ( ( K |`t S ) e. Top /\ A C_ U. ( K |`t S ) ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
| 21 | 11 18 20 | syl2anc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( int ` ( K |`t S ) ) ` A ) C_ A ) |
| 22 | eqid | |- ( K |`t S ) = ( K |`t S ) |
|
| 23 | eqid | |- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
|
| 24 | simp1 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
|
| 25 | simp2 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
|
| 26 | simp3 | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
|
| 27 | 22 2 23 24 25 26 | eldv | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
| 28 | 27 | simprbda | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. ( ( int ` ( K |`t S ) ) ` A ) ) |
| 29 | 21 28 | sseldd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. A ) |
| 30 | 3 29 | ffvelcdmd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. CC ) |
| 31 | 30 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( F ` B ) e. CC ) |
| 32 | 4 31 | subcld | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
| 33 | ssidd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> CC C_ CC ) |
|
| 34 | txtopon | |- ( ( K e. ( TopOn ` CC ) /\ K e. ( TopOn ` CC ) ) -> ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) ) |
|
| 35 | 13 13 34 | mp2an | |- ( K tX K ) e. ( TopOn ` ( CC X. CC ) ) |
| 36 | 35 | toponrestid | |- ( K tX K ) = ( ( K tX K ) |`t ( CC X. CC ) ) |
| 37 | 12 6 | sstrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> A C_ CC ) |
| 38 | eqid | |- ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) |
|
| 39 | 22 2 38 24 25 26 | eldv | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y <-> ( B e. ( ( int ` ( K |`t S ) ) ` A ) /\ y e. ( ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( F ` B ) ) / ( x - B ) ) ) limCC B ) ) ) ) |
| 40 | 39 | simprbda | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. ( ( int ` ( K |`t S ) ) ` A ) ) |
| 41 | 21 40 | sseldd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. A ) |
| 42 | 3 37 41 | dvlem | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 43 | 37 | ssdifssd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( A \ { B } ) C_ CC ) |
| 44 | 43 | sselda | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. CC ) |
| 45 | 37 41 | sseldd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. CC ) |
| 46 | 45 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> B e. CC ) |
| 47 | 44 46 | subcld | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) e. CC ) |
| 48 | 27 | simplbda | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
| 49 | limcresi | |- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) |
|
| 50 | difss | |- ( A \ { B } ) C_ A |
|
| 51 | resmpt | |- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) ) |
|
| 52 | 50 51 | ax-mp | |- ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( z - B ) ) |
| 53 | 52 | oveq1i | |- ( ( ( z e. A |-> ( z - B ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
| 54 | 49 53 | sseqtri | |- ( ( z e. A |-> ( z - B ) ) limCC B ) C_ ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) |
| 55 | 45 | subidd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) = 0 ) |
| 56 | ssid | |- CC C_ CC |
|
| 57 | cncfmptid | |- ( ( A C_ CC /\ CC C_ CC ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
|
| 58 | 37 56 57 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> z ) e. ( A -cn-> CC ) ) |
| 59 | cncfmptc | |- ( ( B e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
|
| 60 | 45 37 33 59 | syl3anc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> B ) e. ( A -cn-> CC ) ) |
| 61 | 58 60 | subcncf | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( z - B ) ) e. ( A -cn-> CC ) ) |
| 62 | oveq1 | |- ( z = B -> ( z - B ) = ( B - B ) ) |
|
| 63 | 61 41 62 | cnmptlimc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( B - B ) e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
| 64 | 55 63 | eqeltrrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( z - B ) ) limCC B ) ) |
| 65 | 54 64 | sselid | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( z - B ) ) limCC B ) ) |
| 66 | 2 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) |
| 67 | 24 25 26 | dvcl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> y e. CC ) |
| 68 | 0cn | |- 0 e. CC |
|
| 69 | opelxpi | |- ( ( y e. CC /\ 0 e. CC ) -> <. y , 0 >. e. ( CC X. CC ) ) |
|
| 70 | 67 68 69 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. y , 0 >. e. ( CC X. CC ) ) |
| 71 | 35 | toponunii | |- ( CC X. CC ) = U. ( K tX K ) |
| 72 | 71 | cncnpi | |- ( ( ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) /\ <. y , 0 >. e. ( CC X. CC ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
| 73 | 66 70 72 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( K tX K ) CnP K ) ` <. y , 0 >. ) ) |
| 74 | 42 47 33 33 2 36 48 65 73 | limccnp2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) limCC B ) ) |
| 75 | df-mpt | |- ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } |
|
| 76 | 75 | oveq1i | |- ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) limCC B ) = ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) |
| 77 | 74 76 | eleqtrdi | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) e. ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) ) |
| 78 | 0cnd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. CC ) |
|
| 79 | ovmpot | |- ( ( y e. CC /\ 0 e. CC ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) = ( y x. 0 ) ) |
|
| 80 | 67 78 79 | syl2anc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y ( u e. CC , v e. CC |-> ( u x. v ) ) 0 ) = ( y x. 0 ) ) |
| 81 | 3 37 29 | dvlem | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC ) |
| 82 | 37 29 | sseldd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> B e. CC ) |
| 83 | 82 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> B e. CC ) |
| 84 | 44 83 | subcld | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) e. CC ) |
| 85 | ovmpot | |- ( ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) e. CC /\ ( z - B ) e. CC ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) |
|
| 86 | 81 84 85 | syl2anc | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) |
| 87 | 86 | eqeq2d | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) <-> w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) |
| 88 | 87 | pm5.32da | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) <-> ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) ) |
| 89 | 88 | opabbidv | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) } ) |
| 90 | df-mpt | |- ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) = { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) } |
|
| 91 | 89 90 | eqtr4di | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } = ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) ) |
| 92 | 91 | oveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( { <. z , w >. | ( z e. ( A \ { B } ) /\ w = ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( z - B ) ) ) } limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) ) |
| 93 | 77 80 92 | 3eltr3d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) e. ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) ) |
| 94 | 67 | mul01d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( y x. 0 ) = 0 ) |
| 95 | 3 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> F : A --> CC ) |
| 96 | simpr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. ( A \ { B } ) ) |
|
| 97 | 50 96 | sselid | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z e. A ) |
| 98 | 95 97 | ffvelcdmd | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` z ) e. CC ) |
| 99 | 30 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( F ` B ) e. CC ) |
| 100 | 98 99 | subcld | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( F ` z ) - ( F ` B ) ) e. CC ) |
| 101 | eldifsni | |- ( z e. ( A \ { B } ) -> z =/= B ) |
|
| 102 | 101 | adantl | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> z =/= B ) |
| 103 | 44 83 102 | subne0d | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( z - B ) =/= 0 ) |
| 104 | 100 84 103 | divcan1d | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. ( A \ { B } ) ) -> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) = ( ( F ` z ) - ( F ` B ) ) ) |
| 105 | 104 | mpteq2dva | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
| 106 | 105 | oveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. ( A \ { B } ) |-> ( ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) x. ( z - B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 107 | 93 94 106 | 3eltr3d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 108 | 32 | fmpttd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) : A --> CC ) |
| 109 | 108 | limcdif | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) ) |
| 110 | resmpt | |- ( ( A \ { B } ) C_ A -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) ) |
|
| 111 | 50 110 | ax-mp | |- ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) = ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) |
| 112 | 111 | oveq1i | |- ( ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) |` ( A \ { B } ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) |
| 113 | 109 112 | eqtrdi | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) = ( ( z e. ( A \ { B } ) |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 114 | 107 113 | eleqtrrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> 0 e. ( ( z e. A |-> ( ( F ` z ) - ( F ` B ) ) ) limCC B ) ) |
| 115 | cncfmptc | |- ( ( ( F ` B ) e. CC /\ A C_ CC /\ CC C_ CC ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
|
| 116 | 30 37 33 115 | syl3anc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
| 117 | eqidd | |- ( z = B -> ( F ` B ) = ( F ` B ) ) |
|
| 118 | 116 29 117 | cnmptlimc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( ( z e. A |-> ( F ` B ) ) limCC B ) ) |
| 119 | 2 | addcn | |- + e. ( ( K tX K ) Cn K ) |
| 120 | opelxpi | |- ( ( 0 e. CC /\ ( F ` B ) e. CC ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
|
| 121 | 68 30 120 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) |
| 122 | 71 | cncnpi | |- ( ( + e. ( ( K tX K ) Cn K ) /\ <. 0 , ( F ` B ) >. e. ( CC X. CC ) ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
| 123 | 119 121 122 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> + e. ( ( ( K tX K ) CnP K ) ` <. 0 , ( F ` B ) >. ) ) |
| 124 | 32 31 33 33 2 36 114 118 123 | limccnp2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) e. ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) ) |
| 125 | 30 | addlidd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( 0 + ( F ` B ) ) = ( F ` B ) ) |
| 126 | 4 31 | npcand | |- ( ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) /\ z e. A ) -> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) = ( F ` z ) ) |
| 127 | 126 | mpteq2dva | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = ( z e. A |-> ( F ` z ) ) ) |
| 128 | 3 | feqmptd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F = ( z e. A |-> ( F ` z ) ) ) |
| 129 | 127 128 | eqtr4d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) = F ) |
| 130 | 129 | oveq1d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( ( z e. A |-> ( ( ( F ` z ) - ( F ` B ) ) + ( F ` B ) ) ) limCC B ) = ( F limCC B ) ) |
| 131 | 124 125 130 | 3eltr3d | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F ` B ) e. ( F limCC B ) ) |
| 132 | 2 1 | cnplimc | |- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 133 | 37 29 132 | syl2anc | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 134 | 3 131 133 | mpbir2and | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B ( S _D F ) y ) -> F e. ( ( J CnP K ) ` B ) ) |
| 135 | 134 | ex | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
| 136 | 135 | exlimdv | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( E. y B ( S _D F ) y -> F e. ( ( J CnP K ) ` B ) ) ) |
| 137 | eldmg | |- ( B e. dom ( S _D F ) -> ( B e. dom ( S _D F ) <-> E. y B ( S _D F ) y ) ) |
|
| 138 | 137 | ibi | |- ( B e. dom ( S _D F ) -> E. y B ( S _D F ) y ) |
| 139 | 136 138 | impel | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ B e. dom ( S _D F ) ) -> F e. ( ( J CnP K ) ` B ) ) |