This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccnp2.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝑋 ) | |
| limccnp2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ 𝑌 ) | ||
| limccnp2.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | ||
| limccnp2.y | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) | ||
| limccnp2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limccnp2.j | ⊢ 𝐽 = ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) | ||
| limccnp2.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) ) | ||
| limccnp2.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑆 ) limℂ 𝐵 ) ) | ||
| limccnp2.h | ⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) | ||
| Assertion | limccnp2 | ⊢ ( 𝜑 → ( 𝐶 𝐻 𝐷 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑅 𝐻 𝑆 ) ) limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccnp2.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝑋 ) | |
| 2 | limccnp2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ 𝑌 ) | |
| 3 | limccnp2.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | |
| 4 | limccnp2.y | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) | |
| 5 | limccnp2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | limccnp2.j | ⊢ 𝐽 = ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) | |
| 7 | limccnp2.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) ) | |
| 8 | limccnp2.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑆 ) limℂ 𝐵 ) ) | |
| 9 | limccnp2.h | ⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) | |
| 10 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 11 | 10 | cnprcl | ⊢ ( 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) → 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝐽 ) |
| 12 | 9 11 | syl | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝐽 ) |
| 13 | 5 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) | |
| 15 | 13 13 14 | mp2an | ⊢ ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
| 16 | xpss12 | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) | |
| 17 | 3 4 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
| 18 | resttopon | ⊢ ( ( ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 19 | 15 17 18 | sylancr | ⊢ ( 𝜑 → ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 20 | 6 19 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 21 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝐽 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝐽 ) |
| 23 | 12 22 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 24 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) | |
| 25 | 23 24 | sylib | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) |
| 26 | 25 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐶 ∈ 𝑋 ) |
| 28 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) | |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) | |
| 30 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) | |
| 31 | 29 30 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) |
| 32 | 31 | ord | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝐵 } ) ) |
| 33 | elsni | ⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) | |
| 34 | 32 33 | syl6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑥 = 𝐵 ) ) |
| 35 | 34 | con1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐴 ) ) |
| 36 | 35 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 37 | 28 36 1 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑅 ∈ 𝑋 ) |
| 38 | 27 37 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ∈ 𝑋 ) |
| 39 | 25 | simprd | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐷 ∈ 𝑌 ) |
| 41 | 28 36 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑆 ∈ 𝑌 ) |
| 42 | 40 41 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ∈ 𝑌 ) |
| 43 | 38 42 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 44 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) | |
| 45 | 13 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 46 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) | |
| 47 | 20 45 9 46 | syl3anc | ⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
| 48 | 47 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑦 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝐻 ‘ 𝑦 ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑦 = 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) | |
| 50 | df-ov | ⊢ ( if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) 𝐻 if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) = ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) | |
| 51 | ovif12 | ⊢ ( if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) 𝐻 if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) | |
| 52 | 50 51 | eqtr3i | ⊢ ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) |
| 53 | 49 52 | eqtrdi | ⊢ ( 𝑦 = 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 → ( 𝐻 ‘ 𝑦 ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) |
| 54 | 43 44 48 53 | fmptco | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ) |
| 55 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) | |
| 56 | 55 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = 𝐴 ) |
| 57 | limcrcl | ⊢ ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 58 | 7 57 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 59 | 58 | simp2d | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ) |
| 60 | 56 59 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 61 | 58 | simp3d | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 62 | 61 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 63 | 60 62 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 64 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 65 | 13 63 64 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 66 | ssun2 | ⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) | |
| 67 | snssg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 68 | 61 67 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 69 | 66 68 | mpbiri | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 70 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ⊆ ℂ ) |
| 71 | 70 1 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ ℂ ) |
| 72 | eqid | ⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 73 | 60 61 71 72 5 | limcmpt | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 74 | 7 73 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 75 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ⊆ ℂ ) |
| 76 | 75 2 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ ℂ ) |
| 77 | 60 61 76 72 5 | limcmpt | ⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑆 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 78 | 8 77 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 79 | 65 45 45 69 74 78 | txcnp | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ) |
| 80 | 15 | topontopi | ⊢ ( 𝐾 ×t 𝐾 ) ∈ Top |
| 81 | 80 | a1i | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐾 ) ∈ Top ) |
| 82 | 43 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ( 𝑋 × 𝑌 ) ) |
| 83 | toponuni | ⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 84 | 65 83 | syl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 85 | 84 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 86 | 82 85 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ) |
| 87 | eqid | ⊢ ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 88 | 15 | toponunii | ⊢ ( ℂ × ℂ ) = ∪ ( 𝐾 ×t 𝐾 ) |
| 89 | 87 88 | cnprest2 | ⊢ ( ( ( 𝐾 ×t 𝐾 ) ∈ Top ∧ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) ) |
| 90 | 81 86 17 89 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) ) |
| 91 | 79 90 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) |
| 92 | 6 | oveq2i | ⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) |
| 93 | 92 | fveq1i | ⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) = ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) |
| 94 | 91 93 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ) |
| 95 | iftrue | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) = 𝐶 ) | |
| 96 | iftrue | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) = 𝐷 ) | |
| 97 | 95 96 | opeq12d | ⊢ ( 𝑥 = 𝐵 → 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 = 〈 𝐶 , 𝐷 〉 ) |
| 98 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) | |
| 99 | opex | ⊢ 〈 𝐶 , 𝐷 〉 ∈ V | |
| 100 | 97 98 99 | fvmpt | ⊢ ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) = 〈 𝐶 , 𝐷 〉 ) |
| 101 | 69 100 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) = 〈 𝐶 , 𝐷 〉 ) |
| 102 | 101 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) = ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 103 | 9 102 | eleqtrrd | ⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) ) |
| 104 | cnpco | ⊢ ( ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ∧ 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) ) → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) | |
| 105 | 94 103 104 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 106 | 54 105 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 107 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
| 108 | 107 1 2 | fovcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 𝐻 𝑆 ) ∈ ℂ ) |
| 109 | 60 61 108 72 5 | limcmpt | ⊢ ( 𝜑 → ( ( 𝐶 𝐻 𝐷 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑅 𝐻 𝑆 ) ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 110 | 106 109 | mpbird | ⊢ ( 𝜑 → ( 𝐶 𝐻 𝐷 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑅 𝐻 𝑆 ) ) limℂ 𝐵 ) ) |