This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It suffices to consider functions which are not defined at B to define the limit of a function. In particular, the value of the original function F at B does not affect the limit of F . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| Assertion | limcdif | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → dom 𝐹 = 𝐴 ) |
| 4 | limcrcl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 6 | 5 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → dom 𝐹 ⊆ ℂ ) |
| 7 | 3 6 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
| 8 | 5 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 9 | 7 8 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 10 | 9 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) ) |
| 11 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) | |
| 12 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 13 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) | |
| 14 | 1 12 13 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
| 15 | 14 | fdmd | ⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝐴 ∖ { 𝐵 } ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝐴 ∖ { 𝐵 } ) ) |
| 17 | limcrcl | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⟶ ℂ ∧ dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⟶ ℂ ∧ dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 19 | 18 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ) |
| 20 | 16 19 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 21 | 18 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 22 | 21 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → { 𝐵 } ⊆ ℂ ) |
| 23 | 20 22 | unssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ⊆ ℂ ) |
| 24 | 11 23 | eqsstrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 25 | 24 | unssad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
| 26 | 25 21 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 27 | 26 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) ) |
| 28 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 29 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 30 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 31 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 32 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐴 ⊆ ℂ ) | |
| 33 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 34 | 28 29 30 31 32 33 | ellimc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 35 | 11 | eqcomi | ⊢ ( 𝐴 ∪ { 𝐵 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) |
| 36 | 35 | oveq2i | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) |
| 37 | 35 | mpteq1i | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 | elun | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) ) | |
| 39 | velsn | ⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) | |
| 40 | 39 | orbi2i | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ) |
| 41 | pm5.61 | ⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) | |
| 42 | fvres | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 43 | 42 | adantr | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 44 | 41 43 | sylbi | ⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 45 | 44 | ifeq2da | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 | 40 45 | sylbi | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 47 | 38 46 | sylbi | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 | 47 | mpteq2ia | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 49 | 37 48 | eqtr4i | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) ) |
| 50 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
| 51 | 32 | ssdifssd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 52 | 36 29 49 50 51 33 | ellimc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 53 | 34 52 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝜑 → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) ) |
| 55 | 10 27 54 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) |
| 56 | 55 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |