This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpomulcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | mpomulcn | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomulcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | mpomulf | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | mulcn2 | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) | |
| 4 | simplr | ⊢ ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) → 𝑢 ∈ ℂ ) | |
| 5 | simplll | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) → 𝑣 ∈ ℂ ) | |
| 6 | simplr | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑑 = 𝑢 ) | |
| 7 | 6 | fvoveq1d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( abs ‘ ( 𝑑 − 𝑏 ) ) = ( abs ‘ ( 𝑢 − 𝑏 ) ) ) |
| 8 | 7 | breq1d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ) ) |
| 9 | simpr | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑒 = 𝑣 ) | |
| 10 | 9 | fvoveq1d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( abs ‘ ( 𝑒 − 𝑐 ) ) = ( abs ‘ ( 𝑣 − 𝑐 ) ) ) |
| 11 | 10 | breq1d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ↔ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) ) |
| 12 | 8 11 | anbi12d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) ) ) |
| 13 | simplr | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑑 = 𝑢 ) | |
| 14 | 13 | eqcomd | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑢 = 𝑑 ) |
| 15 | simpr | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑒 = 𝑣 ) | |
| 16 | 15 | eqcomd | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑣 = 𝑒 ) |
| 17 | 14 16 | oveq12d | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( 𝑢 · 𝑣 ) = ( 𝑑 · 𝑒 ) ) |
| 18 | simplr | ⊢ ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) → 𝑢 ∈ ℂ ) | |
| 19 | simplll | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → 𝑣 ∈ ℂ ) | |
| 20 | tru | ⊢ ⊤ | |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑦 ) ) | |
| 22 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑢 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) | |
| 23 | 21 22 | cbvmpov | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) |
| 24 | 23 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ) |
| 25 | eqidd | ⊢ ( ⊤ → 〈 𝑢 , 𝑣 〉 = 〈 𝑢 , 𝑣 〉 ) | |
| 26 | mulcl | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) | |
| 27 | 26 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
| 28 | 24 25 27 | fvmpopr2d | ⊢ ( ( ⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( 𝑢 · 𝑣 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( ⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 30 | 20 29 | mp3an1 | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 31 | df-ov | ⊢ ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 32 | 30 31 | eqtr4di | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) = ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ) |
| 33 | 18 19 32 | syl2an2r | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( 𝑢 · 𝑣 ) = ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ) |
| 34 | 17 33 | eqtr3d | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( 𝑑 · 𝑒 ) = ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ) |
| 35 | 34 | adantllr | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( 𝑑 · 𝑒 ) = ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ) |
| 36 | df-ov | ⊢ ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑏 , 𝑐 〉 ) | |
| 37 | oveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 · 𝑦 ) = ( 𝑏 · 𝑦 ) ) | |
| 38 | oveq2 | ⊢ ( 𝑦 = 𝑐 → ( 𝑏 · 𝑦 ) = ( 𝑏 · 𝑐 ) ) | |
| 39 | 37 38 | cbvmpov | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑏 ∈ ℂ , 𝑐 ∈ ℂ ↦ ( 𝑏 · 𝑐 ) ) |
| 40 | 39 | a1i | ⊢ ( 𝑎 ∈ ℝ+ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑏 ∈ ℂ , 𝑐 ∈ ℂ ↦ ( 𝑏 · 𝑐 ) ) ) |
| 41 | eqidd | ⊢ ( 𝑎 ∈ ℝ+ → 〈 𝑏 , 𝑐 〉 = 〈 𝑏 , 𝑐 〉 ) | |
| 42 | mulcl | ⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝑏 · 𝑐 ) ∈ ℂ ) | |
| 43 | 42 | 3adant1 | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝑏 · 𝑐 ) ∈ ℂ ) |
| 44 | 40 41 43 | fvmpopr2d | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑏 , 𝑐 〉 ) = ( 𝑏 · 𝑐 ) ) |
| 45 | 36 44 | eqtr2id | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝑏 · 𝑐 ) = ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) |
| 46 | 45 | ad3antlr | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( 𝑏 · 𝑐 ) = ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) |
| 47 | 35 46 | oveq12d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) = ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) = ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) ) |
| 49 | 48 | breq1d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ↔ ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) |
| 50 | 12 49 | imbi12d | ⊢ ( ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) ∧ 𝑒 = 𝑣 ) → ( ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ↔ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 51 | 5 50 | rspcdv | ⊢ ( ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) ∧ 𝑑 = 𝑢 ) → ( ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 52 | 4 51 | rspcimdv | ⊢ ( ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) → ( ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 53 | 52 | expimpd | ⊢ ( ( 𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) → ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝑣 ∈ ℂ → ( 𝑢 ∈ ℂ → ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) → ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) ) |
| 55 | 54 | com13 | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) → ( 𝑢 ∈ ℂ → ( 𝑣 ∈ ℂ → ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) ) |
| 56 | 55 | ralrimdv | ⊢ ( ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) ) → ( 𝑢 ∈ ℂ → ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 57 | 56 | ex | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ( 𝑢 ∈ ℂ → ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) ) |
| 58 | 57 | ralrimdv | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 59 | 58 | reximdv | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 60 | 59 | reximdv | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑑 ∈ ℂ ∀ 𝑒 ∈ ℂ ( ( ( abs ‘ ( 𝑑 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑒 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑑 · 𝑒 ) − ( 𝑏 · 𝑐 ) ) ) < 𝑎 ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) ) |
| 61 | 3 60 | mpd | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝑏 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝑐 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) − ( 𝑏 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑐 ) ) ) < 𝑎 ) ) |
| 62 | 1 2 61 | addcnlem | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |