This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps x (in A ) to B ( x ) ". The class expression B is the value of the function at x and normally contains the variable x . An example is the square function for complex numbers, ( x e. CC |-> ( x ^ 2 ) ) . Similar to the definition of mapping in ChoquetDD p. 2. (Contributed by NM, 17-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | ⊢ 𝑥 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | cB | ⊢ 𝐵 | |
| 3 | 0 1 2 | cmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 0 | cv | ⊢ 𝑥 |
| 6 | 5 1 | wcel | ⊢ 𝑥 ∈ 𝐴 |
| 7 | 4 | cv | ⊢ 𝑦 |
| 8 | 7 2 | wceq | ⊢ 𝑦 = 𝐵 |
| 9 | 6 8 | wa | ⊢ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) |
| 10 | 9 0 4 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 11 | 3 10 | wceq | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |