This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The differentiable predicate. A function F is differentiable at B with derivative C iff F is defined in a neighborhood of B and the difference quotient has limit C at B . (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvval.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| dvval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| eldv.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) | ||
| eldv.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| eldv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| eldv.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| Assertion | eldv | ⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ ( 𝐵 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvval.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| 2 | dvval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | eldv.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) | |
| 4 | eldv.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 5 | eldv.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 6 | eldv.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 7 | 1 2 | dvfval | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) × ℂ ) ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 11 | df-br | ⊢ ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ) | |
| 12 | 11 | bicomi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) |
| 13 | sneq | ⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) | |
| 14 | 13 | difeq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝐵 } ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑧 − 𝑥 ) = ( 𝑧 − 𝐵 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
| 19 | 14 18 | mpteq12dv | ⊢ ( 𝑥 = 𝐵 → ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) |
| 20 | 19 3 | eqtr4di | ⊢ ( 𝑥 = 𝐵 → ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = 𝐺 ) |
| 21 | id | ⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) | |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝐵 ) ) |
| 23 | 22 | opeliunxp2 | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ∪ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝐵 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) ) |
| 24 | 10 12 23 | 3bitr3g | ⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ ( 𝐵 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |