This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| Assertion | dvcl | ⊢ ( ( 𝜑 ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) → 𝐶 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 4 | limccl | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ⊆ ℂ | |
| 5 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 7 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) | |
| 8 | 5 6 7 1 2 3 | eldv | ⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ ( 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 9 | 8 | simplbda | ⊢ ( ( 𝜑 ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 10 | 4 9 | sselid | ⊢ ( ( 𝜑 ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) → 𝐶 ∈ ℂ ) |