This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlem.1 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | |
| dvlem.2 | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | ||
| dvlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| Assertion | dvlem | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlem.1 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 2 | dvlem.2 | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | |
| 3 | dvlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 4 | eldifsn | ⊢ ( 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 6 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ 𝐷 ) | |
| 7 | 5 6 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ 𝐷 ) |
| 9 | 5 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 10 | 7 9 | subcld | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐷 ⊆ ℂ ) |
| 12 | 11 6 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 13 | 11 8 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 14 | 12 13 | subcld | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 15 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ≠ 𝐵 ) | |
| 16 | 12 13 15 | subne0d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 − 𝐵 ) ≠ 0 ) |
| 17 | 10 14 16 | divcld | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| 18 | 4 17 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |