This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Remove unnecessary hypotheses. (Revised by GG, 10-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvadd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| dvadd.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvadd.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) | ||
| dvadd.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) | ||
| dvaddbr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| dvadd.bf | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) 𝐾 ) | ||
| dvadd.bg | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐺 ) 𝐿 ) | ||
| dvadd.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dvaddbr | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( 𝐾 + 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 2 | dvadd.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvadd.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) | |
| 4 | dvadd.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) | |
| 5 | dvaddbr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 6 | dvadd.bf | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) 𝐾 ) | |
| 7 | dvadd.bg | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐺 ) 𝐿 ) | |
| 8 | dvadd.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 9 | eqid | ⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) | |
| 10 | eqid | ⊢ ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 11 | 9 8 10 5 1 2 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑆 D 𝐹 ) 𝐾 ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 12 | 6 11 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
| 13 | 12 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ) |
| 14 | eqid | ⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 15 | 9 8 14 5 3 4 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑆 D 𝐺 ) 𝐿 ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ) |
| 18 | 13 17 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∩ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ) ) |
| 19 | 8 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 20 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 21 | 19 5 20 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 22 | topontop | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
| 24 | toponuni | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) | |
| 25 | 21 24 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 26 | 2 25 | sseqtrd | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 27 | 4 25 | sseqtrd | ⊢ ( 𝜑 → 𝑌 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 28 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ ( 𝐽 ↾t 𝑆 ) | |
| 29 | 28 | ntrin | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ 𝑌 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∩ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ) ) |
| 30 | 23 26 27 29 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∩ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ) ) |
| 31 | 18 30 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 32 | inss1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 | |
| 33 | ssdif | ⊢ ( ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 → ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ( 𝑋 ∖ { 𝐶 } ) ) | |
| 34 | 32 33 | mp1i | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ( 𝑋 ∖ { 𝐶 } ) ) |
| 35 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ) |
| 36 | 2 5 | sstrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 37 | 28 | ntrss2 | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 38 | 23 26 37 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 39 | 38 13 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 40 | 1 36 39 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 41 | 35 40 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 42 | inss2 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 | |
| 43 | ssdif | ⊢ ( ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 → ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ( 𝑌 ∖ { 𝐶 } ) ) | |
| 44 | 42 43 | mp1i | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ( 𝑌 ∖ { 𝐶 } ) ) |
| 45 | 44 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) |
| 46 | 4 5 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
| 47 | 28 | ntrss2 | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ 𝑌 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ⊆ 𝑌 ) |
| 48 | 23 27 47 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑌 ) ⊆ 𝑌 ) |
| 49 | 48 17 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑌 ) |
| 50 | 3 46 49 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 51 | 45 50 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
| 52 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 53 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐽 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) | |
| 54 | 19 19 53 | mp2an | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
| 55 | 54 | toponrestid | ⊢ ( 𝐽 ×t 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) ↾t ( ℂ × ℂ ) ) |
| 56 | 12 | simprd | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 57 | 40 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) : ( 𝑋 ∖ { 𝐶 } ) ⟶ ℂ ) |
| 58 | 36 | ssdifssd | ⊢ ( 𝜑 → ( 𝑋 ∖ { 𝐶 } ) ⊆ ℂ ) |
| 59 | eqid | ⊢ ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) | |
| 60 | 32 2 | sstrid | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑆 ) |
| 61 | 60 25 | sseqtrd | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 62 | difssd | ⊢ ( 𝜑 → ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) | |
| 63 | 61 62 | unssd | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 64 | ssun1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) |
| 66 | 28 | ntrss | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ) |
| 67 | 23 63 65 66 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ) |
| 68 | 67 31 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ) |
| 69 | 68 39 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ∩ 𝑋 ) ) |
| 70 | 32 | a1i | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) |
| 71 | eqid | ⊢ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) = ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) | |
| 72 | 28 71 | restntr | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ 𝑋 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ∩ 𝑋 ) ) |
| 73 | 23 26 70 72 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ∩ 𝑋 ) ) |
| 74 | 8 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 75 | 74 | a1i | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 76 | cnex | ⊢ ℂ ∈ V | |
| 77 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 78 | 5 76 77 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 79 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) = ( 𝐽 ↾t 𝑋 ) ) | |
| 80 | 75 2 78 79 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) = ( 𝐽 ↾t 𝑋 ) ) |
| 81 | 80 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) ) = ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ) |
| 82 | 81 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 83 | 73 82 | eqtr3d | ⊢ ( 𝜑 → ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑋 ) ) ) ∩ 𝑋 ) = ( ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 84 | 69 83 | eleqtrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 85 | undif1 | ⊢ ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( 𝑋 ∪ { 𝐶 } ) | |
| 86 | 39 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ 𝑋 ) |
| 87 | ssequn2 | ⊢ ( { 𝐶 } ⊆ 𝑋 ↔ ( 𝑋 ∪ { 𝐶 } ) = 𝑋 ) | |
| 88 | 86 87 | sylib | ⊢ ( 𝜑 → ( 𝑋 ∪ { 𝐶 } ) = 𝑋 ) |
| 89 | 85 88 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = 𝑋 ) |
| 90 | 89 | oveq2d | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( 𝐽 ↾t 𝑋 ) ) |
| 91 | 90 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) = ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ) |
| 92 | undif1 | ⊢ ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( ( 𝑋 ∩ 𝑌 ) ∪ { 𝐶 } ) | |
| 93 | 39 49 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 94 | 93 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 95 | ssequn2 | ⊢ ( { 𝐶 } ⊆ ( 𝑋 ∩ 𝑌 ) ↔ ( ( 𝑋 ∩ 𝑌 ) ∪ { 𝐶 } ) = ( 𝑋 ∩ 𝑌 ) ) | |
| 96 | 94 95 | sylib | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∪ { 𝐶 } ) = ( 𝑋 ∩ 𝑌 ) ) |
| 97 | 92 96 | eqtrid | ⊢ ( 𝜑 → ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( 𝑋 ∩ 𝑌 ) ) |
| 98 | 91 97 | fveq12d | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) ‘ ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( ( int ‘ ( 𝐽 ↾t 𝑋 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 99 | 84 98 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t ( ( 𝑋 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) ‘ ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) |
| 100 | 57 34 58 8 59 99 | limcres | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 101 | 34 | resmptd | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 102 | 101 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 103 | 100 102 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 104 | 56 103 | eleqtrd | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 105 | 16 | simprd | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 106 | 50 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) : ( 𝑌 ∖ { 𝐶 } ) ⟶ ℂ ) |
| 107 | 46 | ssdifssd | ⊢ ( 𝜑 → ( 𝑌 ∖ { 𝐶 } ) ⊆ ℂ ) |
| 108 | eqid | ⊢ ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) | |
| 109 | difssd | ⊢ ( 𝜑 → ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) | |
| 110 | 61 109 | unssd | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 111 | ssun1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) | |
| 112 | 111 | a1i | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) |
| 113 | 28 | ntrss | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ) |
| 114 | 23 110 112 113 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ) |
| 115 | 114 31 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ) |
| 116 | 115 49 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 117 | 42 | a1i | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) |
| 118 | eqid | ⊢ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) = ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) | |
| 119 | 28 118 | restntr | ⊢ ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ 𝑌 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 120 | 23 27 117 119 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 121 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) | |
| 122 | 75 4 78 121 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) |
| 123 | 122 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) ) = ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 124 | 123 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( ( 𝐽 ↾t 𝑆 ) ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) = ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 125 | 120 124 | eqtr3d | ⊢ ( 𝜑 → ( ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( ( 𝑋 ∩ 𝑌 ) ∪ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝑌 ) ) ) ∩ 𝑌 ) = ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 126 | 116 125 | eleqtrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 127 | undif1 | ⊢ ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( 𝑌 ∪ { 𝐶 } ) | |
| 128 | 49 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ 𝑌 ) |
| 129 | ssequn2 | ⊢ ( { 𝐶 } ⊆ 𝑌 ↔ ( 𝑌 ∪ { 𝐶 } ) = 𝑌 ) | |
| 130 | 128 129 | sylib | ⊢ ( 𝜑 → ( 𝑌 ∪ { 𝐶 } ) = 𝑌 ) |
| 131 | 127 130 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = 𝑌 ) |
| 132 | 131 | oveq2d | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( 𝐽 ↾t 𝑌 ) ) |
| 133 | 132 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) = ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 134 | 133 97 | fveq12d | ⊢ ( 𝜑 → ( ( int ‘ ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) ‘ ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) = ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 135 | 126 134 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t ( ( 𝑌 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) ‘ ( ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) ) |
| 136 | 106 44 107 8 108 135 | limcres | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 137 | 44 | resmptd | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 138 | 137 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ↾ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 139 | 136 138 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 140 | 105 139 | eleqtrd | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 141 | 8 | addcn | ⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 142 | 5 1 2 | dvcl | ⊢ ( ( 𝜑 ∧ 𝐶 ( 𝑆 D 𝐹 ) 𝐾 ) → 𝐾 ∈ ℂ ) |
| 143 | 6 142 | mpdan | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 144 | 5 3 4 | dvcl | ⊢ ( ( 𝜑 ∧ 𝐶 ( 𝑆 D 𝐺 ) 𝐿 ) → 𝐿 ∈ ℂ ) |
| 145 | 7 144 | mpdan | ⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 146 | 143 145 | opelxpd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) |
| 147 | 54 | toponunii | ⊢ ( ℂ × ℂ ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 148 | 147 | cncnpi | ⊢ ( ( + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) → + ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 149 | 141 146 148 | sylancr | ⊢ ( 𝜑 → + ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 150 | 41 51 52 52 8 55 104 140 149 | limccnp2 | ⊢ ( 𝜑 → ( 𝐾 + 𝐿 ) ∈ ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) + ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 151 | eldifi | ⊢ ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) → 𝑧 ∈ ( 𝑋 ∩ 𝑌 ) ) | |
| 152 | 151 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑧 ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 153 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 154 | 153 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝐹 Fn 𝑋 ) |
| 155 | 3 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝑌 ) |
| 156 | 155 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝐺 Fn 𝑌 ) |
| 157 | ssexg | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑋 ∈ V ) | |
| 158 | 36 76 157 | sylancl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 159 | 158 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑋 ∈ V ) |
| 160 | ssexg | ⊢ ( ( 𝑌 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑌 ∈ V ) | |
| 161 | 46 76 160 | sylancl | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 162 | 161 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑌 ∈ V ) |
| 163 | eqid | ⊢ ( 𝑋 ∩ 𝑌 ) = ( 𝑋 ∩ 𝑌 ) | |
| 164 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 165 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝑧 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 166 | 154 156 159 162 163 164 165 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝑧 ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 167 | 152 166 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 168 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 169 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝐶 ∈ 𝑌 ) → ( 𝐺 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) | |
| 170 | 154 156 159 162 163 168 169 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) ∧ 𝐶 ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) + ( 𝐺 ‘ 𝐶 ) ) ) |
| 171 | 93 170 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) + ( 𝐺 ‘ 𝐶 ) ) ) |
| 172 | 167 171 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( ( 𝐹 ‘ 𝐶 ) + ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 173 | difss | ⊢ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ( 𝑋 ∩ 𝑌 ) | |
| 174 | 173 32 | sstri | ⊢ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ 𝑋 |
| 175 | 174 | sseli | ⊢ ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) → 𝑧 ∈ 𝑋 ) |
| 176 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | |
| 177 | 1 175 176 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 178 | 173 42 | sstri | ⊢ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ 𝑌 |
| 179 | 178 | sseli | ⊢ ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) → 𝑧 ∈ 𝑌 ) |
| 180 | ffvelcdm | ⊢ ( ( 𝐺 : 𝑌 ⟶ ℂ ∧ 𝑧 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) | |
| 181 | 3 179 180 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 182 | 1 39 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 183 | 182 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 184 | 3 49 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 185 | 184 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 186 | 177 181 183 185 | addsub4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( ( 𝐹 ‘ 𝐶 ) + ( 𝐺 ‘ 𝐶 ) ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) + ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 187 | 172 186 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) + ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 188 | 187 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) + ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 189 | 177 183 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 190 | 181 185 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 191 | 174 36 | sstrid | ⊢ ( 𝜑 → ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ⊆ ℂ ) |
| 192 | 191 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑧 ∈ ℂ ) |
| 193 | 36 39 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
| 195 | 192 194 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
| 196 | eldifsni | ⊢ ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) → 𝑧 ≠ 𝐶 ) | |
| 197 | 196 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → 𝑧 ≠ 𝐶 ) |
| 198 | 192 194 197 | subne0d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
| 199 | 189 190 195 198 | divdird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) + ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) + ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 200 | 188 199 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) + ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
| 201 | 200 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) + ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) ) |
| 202 | 201 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) + ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 203 | 150 202 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐾 + 𝐿 ) ∈ ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 204 | eqid | ⊢ ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 205 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 206 | 205 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 207 | 206 1 3 158 161 163 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ( 𝑋 ∩ 𝑌 ) ⟶ ℂ ) |
| 208 | 9 8 204 5 207 60 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( 𝐾 + 𝐿 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ ( 𝐾 + 𝐿 ) ∈ ( ( 𝑧 ∈ ( ( 𝑋 ∩ 𝑌 ) ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 209 | 31 203 208 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( 𝐾 + 𝐿 ) ) |