This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrin | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 3 | 1 | ntrss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 6 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 7 | 1 | ntrss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
| 8 | 6 7 | mp3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
| 10 | 5 9 | ssind | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 11 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝐽 ∈ Top ) | |
| 12 | ssinss1 | ⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) | |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) |
| 14 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
| 16 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) |
| 18 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ∧ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ) | |
| 19 | 11 15 17 18 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ) |
| 20 | inss1 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) | |
| 21 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 23 | 20 22 | sstrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝐴 ) |
| 24 | inss2 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) | |
| 25 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝐵 ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝐵 ) |
| 27 | 24 26 | sstrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝐵 ) |
| 28 | 23 27 | ssind | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 29 | 1 | ssntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) ∧ ( ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 30 | 11 13 19 28 29 | syl22anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 31 | 10 30 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ) |