This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddbr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvadd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| dvadd.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvadd.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) | ||
| dvadd.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) | ||
| dvadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvadd.df | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) | ||
| dvadd.dg | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ) | ||
| Assertion | dvadd | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 2 | dvadd.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvadd.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) | |
| 4 | dvadd.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) | |
| 5 | dvadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 6 | dvadd.df | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) | |
| 7 | dvadd.dg | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ) | |
| 8 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) | |
| 9 | ffun | ⊢ ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ → Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) | |
| 10 | 5 8 9 | 3syl | ⊢ ( 𝜑 → Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 11 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 13 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 14 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 15 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) | |
| 16 | 5 13 14 15 | 4syl | ⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 17 | 6 16 | mpbid | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) |
| 18 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 19 | ffun | ⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) | |
| 20 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) | |
| 21 | 5 18 19 20 | 4syl | ⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 22 | 7 21 | mpbid | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) |
| 23 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 24 | 1 2 3 4 12 17 22 23 | dvaddbr | ⊢ ( 𝜑 → 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 25 | funbrfv | ⊢ ( Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) → ( 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) ) | |
| 26 | 10 24 25 | sylc | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |