This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.1 | ⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) | ||
| cnfcom.2 | ⊢ ( 𝜑 → 𝑂 ∈ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) | ||
| cnfcom.3 | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐼 ) : ( 𝐻 ‘ 𝐼 ) –1-1-onto→ 𝑂 ) | ||
| Assertion | cnfcomlem | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.1 | ⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) | |
| 11 | cnfcom.2 | ⊢ ( 𝜑 → 𝑂 ∈ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) | |
| 12 | cnfcom.3 | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐼 ) : ( 𝐻 ‘ 𝐼 ) –1-1-onto→ 𝑂 ) | |
| 13 | omelon | ⊢ ω ∈ On | |
| 14 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 15 | 13 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 16 | 1 15 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 17 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 18 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 20 | 19 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 21 | 4 20 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 22 | 1 15 2 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 23 | 21 22 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 24 | 23 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 25 | 14 24 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 26 | 5 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 27 | 26 | ffvelcdmi | ⊢ ( 𝐼 ∈ dom 𝐺 → ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐹 supp ∅ ) ) |
| 28 | 10 27 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐹 supp ∅ ) ) |
| 29 | 25 28 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) |
| 30 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝐼 ) ∈ On ) | |
| 31 | 2 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐼 ) ∈ On ) |
| 32 | oecl | ⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ) → ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ∈ On ) | |
| 33 | 13 31 32 | sylancr | ⊢ ( 𝜑 → ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ∈ On ) |
| 34 | 24 29 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ ω ) |
| 35 | nnon | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ ω → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ On ) | |
| 36 | 34 35 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ On ) |
| 37 | omcl | ⊢ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ On ) → ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ∈ On ) | |
| 38 | 33 36 37 | syl2anc | ⊢ ( 𝜑 → ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ∈ On ) |
| 39 | 1 15 2 5 21 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 40 | 39 | simprd | ⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 41 | elnn | ⊢ ( ( 𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω ) → 𝐼 ∈ ω ) | |
| 42 | 10 40 41 | syl2anc | ⊢ ( 𝜑 → 𝐼 ∈ ω ) |
| 43 | 6 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On |
| 44 | 43 | ffvelcdmi | ⊢ ( 𝐼 ∈ ω → ( 𝐻 ‘ 𝐼 ) ∈ On ) |
| 45 | 42 44 | syl | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐼 ) ∈ On ) |
| 46 | eqid | ⊢ ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) | |
| 47 | 46 | oacomf1o | ⊢ ( ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ∈ On ∧ ( 𝐻 ‘ 𝐼 ) ∈ On ) → ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 48 | 38 45 47 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 49 | 7 | seqomsuc | ⊢ ( 𝐼 ∈ ω → ( 𝑇 ‘ suc 𝐼 ) = ( 𝐼 ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) ( 𝑇 ‘ 𝐼 ) ) ) |
| 50 | 42 49 | syl | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) = ( 𝐼 ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) ( 𝑇 ‘ 𝐼 ) ) ) |
| 51 | nfcv | ⊢ Ⅎ 𝑢 𝐾 | |
| 52 | nfcv | ⊢ Ⅎ 𝑣 𝐾 | |
| 53 | nfcv | ⊢ Ⅎ 𝑘 ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) | |
| 54 | nfcv | ⊢ Ⅎ 𝑓 ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) | |
| 55 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( dom 𝑓 +o 𝑥 ) = ( dom 𝑓 +o 𝑦 ) ) | |
| 56 | 55 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) = ( 𝑦 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑦 ) ) |
| 57 | simpl | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → 𝑘 = 𝑢 ) | |
| 58 | 57 | fveq2d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑢 ) ) |
| 59 | 58 | oveq2d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) = ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ) |
| 60 | 58 | fveq2d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
| 61 | 59 60 | oveq12d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 62 | 8 61 | eqtrid | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 63 | simpr | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → 𝑓 = 𝑣 ) | |
| 64 | 63 | dmeqd | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → dom 𝑓 = dom 𝑣 ) |
| 65 | 64 | oveq1d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( dom 𝑓 +o 𝑦 ) = ( dom 𝑣 +o 𝑦 ) ) |
| 66 | 62 65 | mpteq12dv | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝑦 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑦 ) ) = ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ) |
| 67 | 56 66 | eqtrid | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) = ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ) |
| 68 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 +o 𝑥 ) = ( 𝑀 +o 𝑦 ) ) | |
| 69 | 68 | cbvmptv | ⊢ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) = ( 𝑦 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑦 ) ) |
| 70 | 62 | oveq1d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝑀 +o 𝑦 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) |
| 71 | 64 70 | mpteq12dv | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝑦 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑦 ) ) = ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) |
| 72 | 69 71 | eqtrid | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) = ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) |
| 73 | 72 | cnveqd | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) = ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) |
| 74 | 67 73 | uneq12d | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) ) |
| 75 | 9 74 | eqtrid | ⊢ ( ( 𝑘 = 𝑢 ∧ 𝑓 = 𝑣 ) → 𝐾 = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) ) |
| 76 | 51 52 53 54 75 | cbvmpo | ⊢ ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) ) |
| 77 | 76 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) ) ) |
| 78 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → 𝑢 = 𝐼 ) | |
| 79 | 78 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝐼 ) ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) = ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
| 81 | 79 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) |
| 82 | 80 81 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| 83 | simpr | ⊢ ( ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) → 𝑣 = ( 𝑇 ‘ 𝐼 ) ) | |
| 84 | 83 | dmeqd | ⊢ ( ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) → dom 𝑣 = dom ( 𝑇 ‘ 𝐼 ) ) |
| 85 | f1odm | ⊢ ( ( 𝑇 ‘ 𝐼 ) : ( 𝐻 ‘ 𝐼 ) –1-1-onto→ 𝑂 → dom ( 𝑇 ‘ 𝐼 ) = ( 𝐻 ‘ 𝐼 ) ) | |
| 86 | 12 85 | syl | ⊢ ( 𝜑 → dom ( 𝑇 ‘ 𝐼 ) = ( 𝐻 ‘ 𝐼 ) ) |
| 87 | 84 86 | sylan9eqr | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → dom 𝑣 = ( 𝐻 ‘ 𝐼 ) ) |
| 88 | 87 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( dom 𝑣 +o 𝑦 ) = ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) |
| 89 | 82 88 | mpteq12dv | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) = ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ) |
| 90 | 82 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) |
| 91 | 87 90 | mpteq12dv | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) = ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) |
| 92 | 91 | cnveqd | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) = ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) |
| 93 | 89 92 | uneq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝐼 ∧ 𝑣 = ( 𝑇 ‘ 𝐼 ) ) ) → ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ↦ ( dom 𝑣 +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ dom 𝑣 ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑦 ) ) ) = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) ) |
| 94 | 10 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 95 | fvexd | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐼 ) ∈ V ) | |
| 96 | ovex | ⊢ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ∈ V | |
| 97 | 96 | mptex | ⊢ ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∈ V |
| 98 | fvex | ⊢ ( 𝐻 ‘ 𝐼 ) ∈ V | |
| 99 | 98 | mptex | ⊢ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ∈ V |
| 100 | 99 | cnvex | ⊢ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ∈ V |
| 101 | 97 100 | unex | ⊢ ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) ∈ V |
| 102 | 101 | a1i | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) ∈ V ) |
| 103 | 77 93 94 95 102 | ovmpod | ⊢ ( 𝜑 → ( 𝐼 ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) ( 𝑇 ‘ 𝐼 ) ) = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) ) |
| 104 | 50 103 | eqtrd | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) = ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) ) |
| 105 | 104 | f1oeq1d | ⊢ ( 𝜑 → ( ( 𝑇 ‘ suc 𝐼 ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ↔ ( ( 𝑦 ∈ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ↦ ( ( 𝐻 ‘ 𝐼 ) +o 𝑦 ) ) ∪ ◡ ( 𝑦 ∈ ( 𝐻 ‘ 𝐼 ) ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o 𝑦 ) ) ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 106 | 48 105 | mpbird | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 107 | 13 | a1i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) → ω ∈ On ) |
| 108 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) → 𝐴 ∈ On ) | |
| 109 | simpr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) → 𝐹 ∈ 𝑆 ) | |
| 110 | 8 | oveq1i | ⊢ ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) |
| 111 | 110 | a1i | ⊢ ( ( 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 112 | 111 | mpoeq3ia | ⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 113 | eqid | ⊢ ∅ = ∅ | |
| 114 | seqomeq12 | ⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) | |
| 115 | 112 113 114 | mp2an | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 116 | 6 115 | eqtri | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 117 | 1 107 108 5 109 116 | cantnfsuc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ 𝐼 ∈ ω ) → ( 𝐻 ‘ suc 𝐼 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) ) |
| 118 | 2 21 42 117 | syl21anc | ⊢ ( 𝜑 → ( 𝐻 ‘ suc 𝐼 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) ) |
| 119 | 118 | f1oeq2d | ⊢ ( 𝜑 → ( ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ↔ ( 𝑇 ‘ suc 𝐼 ) : ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) +o ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 120 | 106 119 | mpbird | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 121 | sssucid | ⊢ dom 𝐺 ⊆ suc dom 𝐺 | |
| 122 | 121 10 | sselid | ⊢ ( 𝜑 → 𝐼 ∈ suc dom 𝐺 ) |
| 123 | epelg | ⊢ ( 𝐼 ∈ dom 𝐺 → ( 𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) | |
| 124 | 10 123 | syl | ⊢ ( 𝜑 → ( 𝑦 E 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
| 125 | 124 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑦 E 𝐼 ) |
| 126 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 127 | 39 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 128 | 5 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 129 | 126 127 128 | syl2anc | ⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 130 | 129 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 131 | 5 | oicl | ⊢ Ord dom 𝐺 |
| 132 | ordelss | ⊢ ( ( Ord dom 𝐺 ∧ 𝐼 ∈ dom 𝐺 ) → 𝐼 ⊆ dom 𝐺 ) | |
| 133 | 131 10 132 | sylancr | ⊢ ( 𝜑 → 𝐼 ⊆ dom 𝐺 ) |
| 134 | 133 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ dom 𝐺 ) |
| 135 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ dom 𝐺 ) |
| 136 | isorel | ⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ 𝐼 ∈ dom 𝐺 ) ) → ( 𝑦 E 𝐼 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ 𝐼 ) ) ) | |
| 137 | 130 134 135 136 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑦 E 𝐼 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ 𝐼 ) ) ) |
| 138 | 125 137 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ 𝐼 ) ) |
| 139 | fvex | ⊢ ( 𝐺 ‘ 𝐼 ) ∈ V | |
| 140 | 139 | epeli | ⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ 𝐼 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝐼 ) ) |
| 141 | 138 140 | sylib | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝐼 ) ) |
| 142 | 141 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝐼 ) ) |
| 143 | ffun | ⊢ ( 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) → Fun 𝐺 ) | |
| 144 | 26 143 | ax-mp | ⊢ Fun 𝐺 |
| 145 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ 𝐼 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝐼 ) ) ) | |
| 146 | 144 133 145 | sylancr | ⊢ ( 𝜑 → ( ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝐼 ) ) ) |
| 147 | 142 146 | mpbird | ⊢ ( 𝜑 → ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) |
| 148 | 13 | a1i | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → ω ∈ On ) |
| 149 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → 𝐴 ∈ On ) | |
| 150 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → 𝐹 ∈ 𝑆 ) | |
| 151 | peano1 | ⊢ ∅ ∈ ω | |
| 152 | 151 | a1i | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → ∅ ∈ ω ) |
| 153 | simpr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → 𝐼 ∈ suc dom 𝐺 ) | |
| 154 | simpr2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → ( 𝐺 ‘ 𝐼 ) ∈ On ) | |
| 155 | simpr3 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) | |
| 156 | 1 148 149 5 150 116 152 153 154 155 | cantnflt | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝐼 ∈ suc dom 𝐺 ∧ ( 𝐺 ‘ 𝐼 ) ∈ On ∧ ( 𝐺 “ 𝐼 ) ⊆ ( 𝐺 ‘ 𝐼 ) ) ) → ( 𝐻 ‘ 𝐼 ) ∈ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
| 157 | 2 21 122 31 147 156 | syl23anc | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐼 ) ∈ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
| 158 | 24 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 159 | 0ex | ⊢ ∅ ∈ V | |
| 160 | 159 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 161 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V ) → ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐹 supp ∅ ) ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) ) ) | |
| 162 | 158 2 160 161 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐹 supp ∅ ) ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) ) ) |
| 163 | simpr | ⊢ ( ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) | |
| 164 | 162 163 | biimtrdi | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐹 supp ∅ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) ) |
| 165 | 28 164 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) |
| 166 | on0eln0 | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ On → ( ∅ ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) ) | |
| 167 | 36 166 | syl | ⊢ ( 𝜑 → ( ∅ ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ≠ ∅ ) ) |
| 168 | 165 167 | mpbird | ⊢ ( 𝜑 → ∅ ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) |
| 169 | omword1 | ⊢ ( ( ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ∈ On ) ∧ ∅ ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) → ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ⊆ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | |
| 170 | 33 36 168 169 | syl21anc | ⊢ ( 𝜑 → ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ⊆ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| 171 | oaabs2 | ⊢ ( ( ( ( 𝐻 ‘ 𝐼 ) ∈ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ∧ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ∈ On ) ∧ ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ⊆ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) → ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | |
| 172 | 157 38 170 171 | syl21anc | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| 173 | 172 | f1oeq3d | ⊢ ( 𝜑 → ( ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 ) +o ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ↔ ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 174 | 120 173 | mpbid | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |