This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqomeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → seqω ( 𝐴 , 𝐶 ) = seqω ( 𝐵 , 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq | ⊢ ( 𝐴 = 𝐵 → ( 𝑎 𝐴 𝑏 ) = ( 𝑎 𝐵 𝑏 ) ) | |
| 2 | 1 | opeq2d | ⊢ ( 𝐴 = 𝐵 → 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 = 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) |
| 3 | 2 | mpoeq3dv | ⊢ ( 𝐴 = 𝐵 → ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) = ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) ) |
| 4 | fveq2 | ⊢ ( 𝐶 = 𝐷 → ( I ‘ 𝐶 ) = ( I ‘ 𝐷 ) ) | |
| 5 | 4 | opeq2d | ⊢ ( 𝐶 = 𝐷 → 〈 ∅ , ( I ‘ 𝐶 ) 〉 = 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) |
| 6 | rdgeq12 | ⊢ ( ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) = ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) ∧ 〈 ∅ , ( I ‘ 𝐶 ) 〉 = 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) → rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐶 ) 〉 ) = rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) ) | |
| 7 | 3 5 6 | syl2an | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐶 ) 〉 ) = rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) ) |
| 8 | 7 | imaeq1d | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐶 ) 〉 ) “ ω ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) “ ω ) ) |
| 9 | df-seqom | ⊢ seqω ( 𝐴 , 𝐶 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐴 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐶 ) 〉 ) “ ω ) | |
| 10 | df-seqom | ⊢ seqω ( 𝐵 , 𝐷 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐵 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐷 ) 〉 ) “ ω ) | |
| 11 | 8 9 10 | 3eqtr4g | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → seqω ( 𝐴 , 𝐶 ) = seqω ( 𝐵 , 𝐷 ) ) |