This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection from A +o B to B +o A . Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom ). (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oacomf1o.1 | ⊢ 𝐹 = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| Assertion | oacomf1o | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( 𝐵 +o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacomf1o.1 | ⊢ 𝐹 = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) | |
| 3 | 2 | oacomf1olem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∧ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∩ 𝐵 ) = ∅ ) ) |
| 4 | 3 | simpld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 6 | 5 | oacomf1olem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∧ ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∧ ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 9 | f1ocnv | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) → ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) –1-1-onto→ 𝐵 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) –1-1-onto→ 𝐵 ) |
| 11 | incom | ⊢ ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) | |
| 12 | 7 | simprd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) |
| 13 | 11 12 | eqtrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ∅ ) |
| 14 | 3 | simprd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∩ 𝐵 ) = ∅ ) |
| 15 | f1oun | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) : 𝐴 –1-1-onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∧ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ∅ ∧ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∩ 𝐵 ) = ∅ ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) | |
| 16 | 4 10 13 14 15 | syl22anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) |
| 17 | f1oeq1 | ⊢ ( 𝐹 = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐹 : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) ) | |
| 18 | 1 17 | ax-mp | ⊢ ( 𝐹 : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) |
| 19 | 16 18 | sylibr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) |
| 20 | oarec | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) | |
| 21 | 20 | f1oeq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ↔ 𝐹 : ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) ) |
| 22 | 19 21 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) |
| 23 | oarec | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 +o 𝐴 ) = ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) ) | |
| 24 | 23 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝐴 ) = ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) ) |
| 25 | uncom | ⊢ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) = ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) | |
| 26 | 24 25 | eqtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝐴 ) = ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) |
| 27 | 26 | f1oeq3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( 𝐵 +o 𝐴 ) ↔ 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( ran ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ∪ 𝐵 ) ) ) |
| 28 | 22 27 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐴 +o 𝐵 ) –1-1-onto→ ( 𝐵 +o 𝐴 ) ) |