This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent A ^o C where C is larger than any exponent ( Gx ) , x e. K which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| cantnflt.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| cantnflt.k | ⊢ ( 𝜑 → 𝐾 ∈ suc dom 𝐺 ) | ||
| cantnflt.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | ||
| cantnflt.s | ⊢ ( 𝜑 → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) | ||
| Assertion | cantnflt | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 7 | cantnflt.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 8 | cantnflt.k | ⊢ ( 𝜑 → 𝐾 ∈ suc dom 𝐺 ) | |
| 9 | cantnflt.c | ⊢ ( 𝜑 → 𝐶 ∈ On ) | |
| 10 | cantnflt.s | ⊢ ( 𝜑 → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) | |
| 11 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) | |
| 12 | 2 9 7 11 | syl21anc | ⊢ ( 𝜑 → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 13 | fveq2 | ⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ ∅ ) ) | |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | 6 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 16 | 14 15 | ax-mp | ⊢ ( 𝐻 ‘ ∅ ) = ∅ |
| 17 | 13 16 | eqtrdi | ⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ∅ ) |
| 18 | 17 | eleq1d | ⊢ ( 𝐾 = ∅ → ( ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 19 | 12 18 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 20 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐶 ∈ On ) |
| 21 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → Ord 𝐶 ) |
| 23 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) |
| 24 | 4 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 25 | ffn | ⊢ ( 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) → 𝐺 Fn dom 𝐺 ) | |
| 26 | 24 25 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐺 Fn dom 𝐺 ) |
| 27 | 4 | oicl | ⊢ Ord dom 𝐺 |
| 28 | ordsuc | ⊢ ( Ord dom 𝐺 ↔ Ord suc dom 𝐺 ) | |
| 29 | 27 28 | mpbi | ⊢ Ord suc dom 𝐺 |
| 30 | ordelon | ⊢ ( ( Ord suc dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺 ) → 𝐾 ∈ On ) | |
| 31 | 29 8 30 | sylancr | ⊢ ( 𝜑 → 𝐾 ∈ On ) |
| 32 | ordsssuc | ⊢ ( ( 𝐾 ∈ On ∧ Ord dom 𝐺 ) → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) | |
| 33 | 31 27 32 | sylancl | ⊢ ( 𝜑 → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) |
| 34 | 8 33 | mpbird | ⊢ ( 𝜑 → 𝐾 ⊆ dom 𝐺 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ⊆ dom 𝐺 ) |
| 36 | vex | ⊢ 𝑥 ∈ V | |
| 37 | 36 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 = suc 𝑥 ) | |
| 39 | 37 38 | eleqtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ 𝐾 ) |
| 40 | fnfvima | ⊢ ( ( 𝐺 Fn dom 𝐺 ∧ 𝐾 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) | |
| 41 | 26 35 39 40 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) |
| 42 | 23 41 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 43 | ordsucss | ⊢ ( Ord 𝐶 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) ) | |
| 44 | 22 42 43 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) |
| 45 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 46 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 47 | 5 46 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 48 | 47 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 49 | 45 48 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 50 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 51 | 3 50 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 52 | 49 51 | sstrd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
| 54 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ∈ suc dom 𝐺 ) |
| 55 | 38 54 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc 𝑥 ∈ suc dom 𝐺 ) |
| 56 | ordsucelsuc | ⊢ ( Ord dom 𝐺 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) ) | |
| 57 | 27 56 | ax-mp | ⊢ ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) |
| 58 | 55 57 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ dom 𝐺 ) |
| 59 | 24 | ffvelcdmi | ⊢ ( 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
| 61 | 53 60 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 62 | onsuc | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ On → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 64 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
| 65 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ∅ ∈ 𝐴 ) |
| 66 | oewordi | ⊢ ( ( ( suc ( 𝐺 ‘ 𝑥 ) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) | |
| 67 | 63 20 64 65 66 | syl31anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) |
| 68 | 44 67 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) |
| 69 | 38 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ suc 𝑥 ) ) |
| 70 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ ω ) | |
| 71 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝜑 ) | |
| 72 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) | |
| 73 | suceq | ⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) | |
| 74 | 73 | fveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 75 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) ) | |
| 76 | suceq | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) | |
| 77 | 75 76 | syl | ⊢ ( 𝑥 = ∅ → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) |
| 78 | 77 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
| 79 | 74 78 | eleq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
| 80 | 72 79 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 81 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) | |
| 82 | suceq | ⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) | |
| 83 | 82 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
| 84 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 85 | suceq | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) | |
| 86 | 84 85 | syl | ⊢ ( 𝑥 = 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) |
| 87 | 86 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
| 88 | 83 87 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 89 | 81 88 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 90 | eleq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) | |
| 91 | suceq | ⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) | |
| 92 | 91 | fveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
| 93 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) ) | |
| 94 | suceq | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) | |
| 95 | 93 94 | syl | ⊢ ( 𝑥 = suc 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) |
| 96 | 95 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 97 | 92 96 | eleq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 98 | 90 97 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 99 | 48 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 100 | 24 | ffvelcdmi | ⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
| 101 | 49 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 102 | 100 101 | sylan2 | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 103 | 99 102 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) |
| 104 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
| 105 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) | |
| 106 | 104 103 105 | syl2anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 107 | 52 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 108 | 100 107 | sylan2 | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 109 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) | |
| 110 | 104 108 109 | syl2anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 111 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ 𝐴 ) |
| 112 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) | |
| 113 | 104 108 111 112 | syl21anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 114 | omord2 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) | |
| 115 | 106 104 110 113 114 | syl31anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) |
| 116 | 103 115 | mpbid | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
| 117 | peano1 | ⊢ ∅ ∈ ω | |
| 118 | 117 | a1i | ⊢ ( ∅ ∈ dom 𝐺 → ∅ ∈ ω ) |
| 119 | 1 2 3 4 5 6 | cantnfsuc | ⊢ ( ( 𝜑 ∧ ∅ ∈ ω ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
| 120 | 118 119 | sylan2 | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
| 121 | 16 | oveq2i | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) |
| 122 | omcl | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) | |
| 123 | 110 106 122 | syl2anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) |
| 124 | oa0 | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) | |
| 125 | 123 124 | syl | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 126 | 121 125 | eqtrid | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 127 | 120 126 | eqtrd | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 128 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) | |
| 129 | 104 108 128 | syl2anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
| 130 | 116 127 129 | 3eltr4d | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
| 131 | 130 | ex | ⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
| 132 | ordtr | ⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) | |
| 133 | 27 132 | ax-mp | ⊢ Tr dom 𝐺 |
| 134 | trsuc | ⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) | |
| 135 | 133 134 | mpan | ⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
| 136 | 135 | imim1i | ⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 137 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐴 ∈ On ) |
| 138 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 139 | 137 138 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord 𝐴 ) |
| 140 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 141 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 142 | 24 | ffvelcdmi | ⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 143 | 142 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 144 | 141 143 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐵 ) |
| 145 | 140 144 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) |
| 146 | ordsucss | ⊢ ( Ord 𝐴 → ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) ) | |
| 147 | 139 145 146 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) |
| 148 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) | |
| 149 | 137 145 148 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 150 | onsuc | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) | |
| 151 | 149 150 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 152 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
| 153 | 152 143 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
| 154 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) | |
| 155 | 137 153 154 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 156 | omwordi | ⊢ ( ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) | |
| 157 | 151 137 155 156 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) |
| 158 | 147 157 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
| 159 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) | |
| 160 | 137 153 159 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
| 161 | 158 160 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 162 | eloni | ⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) | |
| 163 | 153 162 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 164 | vex | ⊢ 𝑦 ∈ V | |
| 165 | 164 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 166 | 164 | sucex | ⊢ suc 𝑦 ∈ V |
| 167 | 166 | epeli | ⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
| 168 | 165 167 | mpbir | ⊢ 𝑦 E suc 𝑦 |
| 169 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 170 | 1 2 3 4 5 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 171 | 170 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 172 | 4 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 173 | 169 171 172 | syl2anc | ⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 174 | 173 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 175 | 135 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
| 176 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) | |
| 177 | isorel | ⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 178 | 174 175 176 177 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 179 | 168 178 | mpbii | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) |
| 180 | fvex | ⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V | |
| 181 | 180 | epeli | ⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 182 | 179 181 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 183 | ordsucss | ⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 184 | 163 182 183 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
| 185 | 24 | ffvelcdmi | ⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 186 | 175 185 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 187 | 152 186 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 188 | onsuc | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) | |
| 189 | 187 188 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 190 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ∅ ∈ 𝐴 ) |
| 191 | oewordi | ⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) | |
| 192 | 189 153 137 190 191 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 193 | 184 192 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 194 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) | |
| 195 | 193 194 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 196 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 197 | 196 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ ω ) |
| 198 | 6 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On |
| 199 | 198 | ffvelcdmi | ⊢ ( suc 𝑦 ∈ ω → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
| 200 | 197 199 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
| 201 | omcl | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) | |
| 202 | 155 149 201 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) |
| 203 | oaord | ⊢ ( ( ( 𝐻 ‘ suc 𝑦 ) ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) | |
| 204 | 200 155 202 203 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 205 | 195 204 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 206 | 1 2 3 4 5 6 | cantnfsuc | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 207 | 196 206 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 208 | 207 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 209 | omsuc | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) | |
| 210 | 155 149 209 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 211 | 205 208 210 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 212 | 161 211 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 213 | 212 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 214 | 213 | a2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 215 | 136 214 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 216 | 215 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 217 | 80 89 98 131 216 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝜑 → ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 218 | 70 71 58 217 | syl3c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
| 219 | 69 218 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
| 220 | 68 219 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 221 | 220 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 222 | peano2 | ⊢ ( dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω ) | |
| 223 | 170 222 | simpl2im | ⊢ ( 𝜑 → suc dom 𝐺 ∈ ω ) |
| 224 | elnn | ⊢ ( ( 𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω ) → 𝐾 ∈ ω ) | |
| 225 | 8 223 224 | syl2anc | ⊢ ( 𝜑 → 𝐾 ∈ ω ) |
| 226 | nn0suc | ⊢ ( 𝐾 ∈ ω → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) | |
| 227 | 225 226 | syl | ⊢ ( 𝜑 → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) |
| 228 | 19 221 227 | mpjaod | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |