This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel and closed form of epeli . Definition 1.6 of Schloeder p. 1. (Contributed by Scott Fenton, 27-Mar-2011) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 14-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epelg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐴 E 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ E ) | |
| 2 | 0nelopab | ⊢ ¬ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } | |
| 3 | df-eprel | ⊢ E = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } | |
| 4 | 3 | eqcomi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } = E |
| 5 | 4 | eleq2i | ⊢ ( ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } ↔ ∅ ∈ E ) |
| 6 | 2 5 | mtbi | ⊢ ¬ ∅ ∈ E |
| 7 | eleq1 | ⊢ ( 〈 𝐴 , 𝐵 〉 = ∅ → ( 〈 𝐴 , 𝐵 〉 ∈ E ↔ ∅ ∈ E ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( 〈 𝐴 , 𝐵 〉 = ∅ → ¬ 〈 𝐴 , 𝐵 〉 ∈ E ) |
| 9 | 8 | con2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ E → ¬ 〈 𝐴 , 𝐵 〉 = ∅ ) |
| 10 | opprc1 | ⊢ ( ¬ 𝐴 ∈ V → 〈 𝐴 , 𝐵 〉 = ∅ ) | |
| 11 | 9 10 | nsyl2 | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ E → 𝐴 ∈ V ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 E 𝐵 → 𝐴 ∈ V ) |
| 13 | 12 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 E 𝐵 → 𝐴 ∈ V ) ) |
| 14 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 15 | 14 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) ) |
| 16 | eleq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 17 | 16 3 | brabga | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 18 | 17 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) ) |
| 19 | 13 15 18 | pm5.21ndd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |