This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpo.1 | ⊢ Ⅎ 𝑧 𝐶 | |
| cbvmpo.2 | ⊢ Ⅎ 𝑤 𝐶 | ||
| cbvmpo.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| cbvmpo.4 | ⊢ Ⅎ 𝑦 𝐷 | ||
| cbvmpo.5 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) | ||
| Assertion | cbvmpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpo.1 | ⊢ Ⅎ 𝑧 𝐶 | |
| 2 | cbvmpo.2 | ⊢ Ⅎ 𝑤 𝐶 | |
| 3 | cbvmpo.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | cbvmpo.4 | ⊢ Ⅎ 𝑦 𝐷 | |
| 5 | cbvmpo.5 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑧 𝐵 | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 8 | eqidd | ⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐵 ) | |
| 9 | 6 7 1 2 3 4 8 5 | cbvmpox | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |