This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplify the isomorphism of cantnf to simple bijection. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnff1o.1 | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnff1o.2 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnff1o.3 | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| Assertion | cantnff1o | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴 ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnff1o.1 | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnff1o.2 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnff1o.3 | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | 1 2 3 4 | cantnf | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) ) |
| 6 | isof1o | ⊢ ( ( 𝐴 CNF 𝐵 ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) → ( 𝐴 CNF 𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴 ↑o 𝐵 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴 ↑o 𝐵 ) ) |